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Supervised Learning

Object class

Training Data{X,L yz N

/

Input Output

ﬁI-D THE UNIVERSITY OF TEXAS AT DALLAS



Unsupervised Learning

N
Training data {X’i }izl No label
Goal: discover some underlying hidden structure of the data

Examples
* Dimension reduction
* Clustering
* Probability density estimation
* Generative models
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Dimension Reduction

Map data from a high-dimension space to a low-dimension space
n ™
XeER"—>yeR m <n

The low-dimensional representation maintains meaningful properties

of the original data
* E.g., can be used to reconstruct the original data

Applications
* Data compression, data visualization, data representation learning
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Principal Component Analysis (PCA)

Linear mapping

m X/

y = Px

/ N\

mXxXm m X 1

P1
P2

Rows of P, principal components
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Principal Component Analysis (PCA)

Change of basis

Projection

_P1°X
P2 - X
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Principal Component Analysis (PCA)

Given a set of data points X - RT?’ . n\
Y — PX dimension # data points

Covariance matrix

X1 1
X=1 Cx = —XXT CY
n
Xm 1
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D is a diagonal matrix

Principal Component Analysis (PCA) 2 matrixof cigenvector

of C_X arranged as rows

The goal of PCA

e All off-diagonal terms in CY should be zero (Y is decorrelated)
* Each successive dimension of Y should be rank-ordered according to variance

Solution T The principal components P
Cy = lYYT Cy = PCxP is the eigenvectors of
n T T
— P(E'DE)P 1
_ ! r Cx = - XX’
= 5 PREX) = P(P"DP)P’ X
1
= —PXX'P’ = (PP")D(PP")
" —1 —1
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Principal Component Analysis (PCA)

Dimension reduction Yy — PLX

y == PX pl
\ =) P2
m :

Use L < m principal components
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Autoencoder

Use a neural network for dimension reduction

Encoder Z Decoder

Reconstruction loss function

Ly = ||x — %|°
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Case Study: Denoising Autoencoder

Encoder Decoder

Original Noisy Code Output
Image Input

IIID THE UNIVERSITY OF TEXAS AT DALLAS


https://www.analyticsvidhya.com/blog/2021/07/image-denoising-using-autoencoders-a-beginners-guide-to-deep-learning-project/

Content Generation

N
Given a dataset {Xi}fi:l
How to generate new content from the underlying distribution P(x)?
Autoencoder is not suitable for content generation

Encoder g Decoder
A O

what can happen without regularisation x

The latent space is not regularized. Some latent vectors may generate meaningless content.
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Autoencoder is not suitable for content
generation

Irregular latent space prevent us from using autoencoder for new
content generation

O

- A -
! JAN
encoded data can be decoded
O without loss if the autcencoder
has encugh degrees of freedom
A o
‘\ - @
frow the @ =
 Jorton ey
o without explicit regularisation, :
:':‘;':::g;:z;?" for new conbent some points of the latent space O

are “meaningless” once decoded

what can happen without regularisation x

The latent space is not regularized. Some latent vectors may generate meaningless content
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Variational Autoencoder

Introduce regularization to the latent space
Probabilistic formulation

. p(z|x)

Encoder Latent z ~ p(z|x) Decoder
distribution A
X Sampled X
latent

p(Z‘X) — N(,U,a;, O'x) ﬁ ,/\/‘(O7 I) Prior distribution
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Variational Autoencoder

Latent space
 Continuity (close points in latent space decode similar outputs)
* Completeness (a sampled latent should generate meaningful output)
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what can happen without regularisation x V what we want to obtain with regularisation
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https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Variational Autoencoder

Encoder Reparameterization
¢ ~N(0,1I)
\\\ No gradient
MCL’ Sampling ua; \
d yd O
.\ ZNN(N:mO'a:) .\ /Z:ch+ﬂx
Encoder O-x Not differentiable Encoder O-CE
X X
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Variational Autoencoder

Encoder-Decoder

Z:U:L'C_I_,ux ‘
~o,.”

Encoder Decoder .

X X

Loss function
L = C||x — x||* + KL(N (ptg, 02), N'(0,1))
p(z)

Reconstruction loss Prior loss Dxu(P| Q)= /_ p(w)log(m) dx
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Variational Autoencoder 2D latent space

’oc“co"co'co'co!.o'.obh

SEEEEE a

Generating data

Degree of smile

Vo1 N}

Decoder

» Diagonal prior on z -> independent '.Pm:t:.'_ﬂ

latent variables IEEEEES . . B
 Different dimensions of z encode - > __, Head pose

. o Vary z,
interpretable factors of variation

Auto-Encoding Variational Bayes. Kingma & Welling, ICLR’14.
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Direct Content Generation

VAE models the density as
po(a) = [ pol)po(alz)d:

Directly sample from the training distribution without modeling the
probability density

Generative Adversarial Networks (GANs) can generate better samples
compared to VAEs

ﬁI-D THE UNIVERSITY OF TEXAS AT DALLAS



Generative Adversarial Network (GAN)

Goal: sample examples from training distribution P(X)

Solution
* First sample from a simple distribution (e.g., uniform distribution)
* Learn transformation to the training distribution

Output: sample from the
training distribution

* How to train the generator?
* We do not know the mapping
Generator from z to training data
Network
Input: random noise Z
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Generative Adversarial Network (GAN)

Generator-Discriminator

Real?
Z - ’ ’ Fake?
— — —

Gradient
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Training GAN: Two-player Game

-— - W

Generated images

=

Training images

Real?
Fake?

Discriminator: try to distinguish between real image and fake images
(generated images from the generator)

Generator: try to fool the discriminator by generating real-look images
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Training GAN: Two-player Game

Minmax objective function

min max [ Crmpgar, 108 Do, () +
04 04 I

Discriminator output
for real data x

L ~op(2) log(l — Dy, (GOQ (z)))]

<]

Discriminator output for

Generator output
generated fake data

e Discriminator: maximize the objective such that D(x) is close to 1 and D(G(z)) is close to O
* Generator: minimize the objective such that D(G(z)) is close to 1 (fool the discriminator)

Generative Adversarial Nets. Goodfellow et al. NeurlPS’14
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Generative Adversarial Network (GAN)

Visualization of samples from the model

Nearest neighbor from training set
Generative Adversarial Nets. Goodfellow et al. NeurIPS'14




Summary

Autoencoder
* Good for dimension reduction, cannot generate new data

Variational autoencoder

* Probabilistic formulation
* Regularized latent space, can be used to generate new data

Generative Adversarial Network
* Directly sample training distribution to generate data
* Better samples compared VAEs
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Further Reading

A Tutorial on Principal Component Analysis. Jonathon Shlens, 2014.

Auto-Encoding Variational Bayes. Kingma & Welling, ICLR, 2004.
Autoencoders. Dor Bank, Noam Koenigstein, Raja Giryes, 2021.

Generative Adversarial Nets. Goodfellow et al. NeurlPS’14.

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE
ADVERSARIAL NETWORKS. Radford et al., ICLR’16.
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https://arxiv.org/abs/1404.1100
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1511.06434

