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How are Images Generated?
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3D World
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Geometry in Image Generation
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2D Points and 3D Points

A 2D point is usually used to indicate

pixel coordinates of a pixel
x; =<——image plane - -

X4 $
x = (z,y) € R? X =
Yy
c Camera center o -
A 3D point in the real world
X
X vox=(z,y,2) ERY xX=|Y
A
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Homogeneous Coordinates

T
(z,y) = | ¥ (z,y,2) = Y — Y
1 ~ g1 >
L - I 1 ]
homogeneous image homogeneous scene 1
coordinates coordinates .
Up to scale
Conversion o
- - €T
N Y
y | = (z/w,y/w) | = @/w,y/w, z/w)
W
- — i w il
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Vector Inner Product

Dot product

Vector
a-b=lall llbllcosé Projection
a-b a‘b
@ = llallcosd =2l T = o
0 = arccos(z+y/1x11y1)
A ‘b b
Yy a]_ s a’lb — a
[bl| {[b]
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https://en.wikipedia.org/wiki/Dot_product

Vector Cross Product

Vector cross product

i j k
axb=la a a
by by bs
axb= | Bh_|" a3j-|- ap a2y
by b3 by b3 b1 b
a x b = [al||b]|sin(6) n = (azbs — agby)i — (a1bg — aghy)j + (arby — asby)k
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https://en.wikipedia.org/wiki/Cross_product

2D Lines

A line in a 2D plane ar +by+c=0 o

—

It is parameterized by 1 = (a, b, C)T Homogeneous

Coordinates

k‘(a,, b, C)T represents the same line for nonzero k

Line equation
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2D Lines
1= (a,b,c)

Normalize by \/&2 + b2

N‘ " I = (fg, Ny, d) = (1, d)

Normal vector HﬁH — 1

\) Distance to the origin d

(cos 8, sin f)

N = (Mg, Ny)
polar coordinates (H,d)
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Intersection of 2D Lines Vector cross product

] = ((l, b, C)T ' = (a,a bla C/)T
The intersectionis X — ]_ X ]_,

a x b = || |b||sin(f) n

N1 N .

- (Ix1I)=1-(1Ix1)=0 |

T T by by bs
/

1 X = l X = O Vector dot product

Ascalar a-b = ||a| ||b|[cos®
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A Line Joining two Points Vector cross product

i e
X = |y x = |
ax b =[] b sin(f) n
l = x x x’ Pk
axb= a; ay Qs
/ / / 1 by b3
X-(xxx)=x--(xxx)=0 mt
T /' Vector dot product
Xx'l=x"1=0

a-b = [al| [b]| cos
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3D Plane

A 3D plane equation AT by +cz+d=0
It is parameterized by  (a, b, ¢, d)

Normal vector and distance

m = (R, fiy, iz, d) = (A, d)

il = (cos f cos @, sin 6 cos ¢, sin ¢)
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3D Lines

Any point on the line is a linear combination of two points

r=(1-A)p+2Aq

Using a line direction

r:p—l—)\a
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2D Transformations

e
y‘ / Slmlﬁ;Q prOJeCtIVG /
translation
_—Y
ﬁ ~—_
. Ay
Euclidean affine >
\ X
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2D Translation

x’ X t
y' Y ty

x'=x+t

Homogeneous coordinate

x =T t|X B _I t__
£><3} X,:_OT 1_X

augmented vector }_( — (IL', y, 1) 3 X 3
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2D Euclidean Transformation

2D Rotation + 2D translation

R — cos 6

x = Rx+t

sinf) cosf

[m’] - [cosﬂ —sinH] lw]
v |  |sin® cosf ||y
r' = zcosh — ysinb
y = xsinf + ycosh

—sin @

.

orthonormal rotation matrix

RR! =TIand |R| =1
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2D Euclidean Transformation

2D Rotation + 2D translation

/ cosfl —sinf
X = RX R=
R T t sinf cosf
I __ < « Degree of freedom (DOF)
X = R t X * The maximum number of logically
) ) independent values
2 X 3 e 2D Rotation?
> e 2D Euclidean transformation?
X = (x,y,1)
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2D Similarity Transformation

Scaled 2D rotation + 2D translation

X, — sRx 1t R — Cf)SH —sin 6
_sm@ cos 0 |
@ —b t, _
X,:[SR t}i: 1 x=(z,y,1)
b a t,

The similarity transform preserves angles between lines.
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2D Affine Transformation

Arbitrary 2x3 matrix

AX X = (z,y,1)

/ aopo aopi1 4ap2| _

adip di11 Q12

Parallel lines remain parallel under affine transformations.
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2D Affine Transformation Examples

] o B E]
BRI E S E R

o

Scaling along x Shearing along x Translation along x
10 0 10 (©) D(H)]
[0 1.00} Vot [0 ] [-o.oo 1 ] Vot [0 } l n(0) @) |V
MY MY
Scaling along y Shearing along y Rotation
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https://www.algorithm-archive.org/contents/affine_transformations/affine_transformations.html

2D Projective Transformation

Also called perspective transform or homography

~/ S~ |
X = HX homogeneous coordinates

—~

3 X 3 H is only defined up to a scale

,  hoor + hory + ho2 ,  hiox + h11y + hio

X

 hoox + hory + hao hoox + h21y + hoo

- ) ) - transa/tign
Perspective transformations preserve straight lines _/v@%ﬁ
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Hierarchy of 2D Transformations

Transformation Matrix # DoF Preserves Icon
translation [I t} 2 orientation

2X3
rigid (Euclidean) {R t} 3 lengths

2X3

affine _A_ 6 parallelism
L 12X%X3

~

similarity {SR t} 4 angles Q
2x3

projective H 8 straight lines
L 13x%x3
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3D Translation

x X t
y/ . y _I_ ty X =X+ t
_z’_ z i

x = [I t} X

3 X 4

augmented vector X —— (CI;” y, Z7 ]_)
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3D Euclidean Transformation SE(3)

3D Rotation + 3D translation

orthonormal rotation matrix
— Rx+t RR! =Tand |R| =1
i i 3 X3
x’ R t|X
3 X 4
X = (z,y,2,1)
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3D Similarity Transformation

Scaled 3D rotation + 3D translation

x' = sRx + t

'~ [sR t|x X =(x,y,2,1)
S !

This transformation preserves angles between lines and planes.

'S
|
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3D Affine Transformation

S

|
S
p—t
-
S
ot
ot
S
p—t
\V)
S
p—t
Qo
Xl

3 X 4

Parallel lines and planes remain parallel under affine transformations.
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3D Projective Transformation

Also called 3D perspective transform or homography

~/ S~ |
X = HX homogeneous coordinates

4 X 4 H s only defined up to a scale

Perspective transformations preserve straight lines
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3D Transformations

Transformation Matrix # DoF Preserves Icon

translation {I t} 3 orientation
3x4

rigid (Euclidean) [R t} ) 6 lengths
3 X

affine _A- 12 parallelism
L 13x4

similarity {sR t} 7 angles Q
3x4

projective H 15 straight lines
L 14x4
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Further Reading

Section 2.1, Computer Vision, Richard Szeliski

Chapter 2 and 3, Multiple View Geometry in Computer Vision, Richard
Hartley and Andrew Zisserman
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