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A lot of slides of course lectures borrowed from Professor Yu Xiang’s VR class




Tracking in VR

* Tracking the user’s sense organs
* E.g., Head and eye
* Render stimulus accordingly

* Tracking user’s other body parts
* E.g., human body and hands
* Locomotion and manipulation

* Tracking the rest of the environment
* Augmented reality
* Obstacle avoidance in the real world




Feature-based Tracking

The PnP problem

* Known: 3D locations, 2D locations,
Ay camera intrinsics

e Unknown:

Features in Image
6D pose of the camera

Focal Point Features in World

x Image Plane What if we do not have the 3D locations of these feature points?




Feature-based Tracking

* |dea: using images from different views and feature matching

Geometry-aware Feature Matching for Structure from Motion Applications. Shah et al, WACV’15




Feature-based Tracking

* |dea: using images from different views and feature matching

* Triangulation from pixel correspondences to compute 3D location

Intersection of two backprojected lines

A

A X =1xV

Unknow




Structure from Motion

* Input
* A set of images from different views

* Output
* 3D Locations of all feature points in a world frame
e Camera poses of the images




Structure from motion

minimize

g(R, T, X)

non-linear least squares

Camera 2

R2’ t2
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A non-linear least squares problem
* E.g. Levenberg-Marquardt




The Levenberg-Marquardt Algorithm
* Nonlinear least squares 3 € argming S (8) = argminy zm: i — £ (zi, B)]°

* An iterative algorithm
e Start with an initial guess g

* For each iteration 5 — 0+ )

* How to get 6?

0 19
* Linear approximation f(z;,8+ d) = f(x;,8) + J;é J, = f(zi, B)

op
» Find to () minimize the objective S (B + &) ~ Z i — f (zi, B) — J:6]

1=1

Wikipedia




The Levenberg-Marquardt Algorithm

* Vector notation for § (B + 6) ~ Em: lyi — f(zi,B) — J;6)°
=1
S(B+0)~|y—f(B) I
y —f(B) — 38" [y — £(B) — J4]
y—fB) y—£f(B) —[y—£(B)'I6—(I6)" [y —£(B)] +6 I"I$
y—£(B) [y — £(8)] - 2[y — £(8))" I8 + 673 6.

Take derivation with respect to 5 and set to zero (JTJ) §=J"[y - £(B)]

Levenberg's contribution (J'J + XI)§=J" [y — £(B)]  damped version
B+ B+0

Wikipedia




Structure from Motion

GORT =) > s Ry o[l

=1 j=1-—4
pred/cted observed
l, image location image location

indicator variable:
is point i visible in image j ?

g =(X,R,T)
How to get the initial estimation BO ?

Random guess is not a good idea.




Matching Two Views

e Fundamental matrix
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Matching Two Views

e Essential matrix E
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credit: Thomas Opsahl




Matching Two Views
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* |In 1981 H. C Longuet-Higgins
proved that one could
recover the relative pose R
and t from the essential
matrix E up to the scale of £

credit: Thomas Opsahl w=K[I |0]X u' = K'[R | t]X

H. C Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, Nature,1981




Triangulation

X

TN

Intersection of two backprojected lines

X=1xV

A

Estimated from essential matrix E

A

—)
R T

How to get the initial estimation 60 ?

p=(X,R,T)




Structure from Motion

2
* Bundle adjustment JX,RT) = Z Z Wij |P(X“ ) - [vw”‘
i=1j=1 \
¢ |teratiVEIY refinement of == pred/cted observed
structure (3D pOintS) and ind,-cato{var,-ab/e: image location image location

motion (camera poses) is point i visible in image j ?

Reconstructed X

 Levenberg-Marquardt 0. @ ground truth X;
algorithm e

Examples: http://vision.soic.indiana.edu/projects/disco/



http://vision.soic.indiana.edu/projects/disco/

Basics

* Image feature matching




Matching with Features

e Detecting features

* Matching Features
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Harris Corner Detector /\/\

e Corners are regions with large variation in intensity in all directions

\ s— N
) |
“flat” region: “edge”: ‘corner’:
no change in no change significant
all directions along the edge change in all
direction directions




Harris Corner Detector

f(Az,Ay) = N (I(ze, ) — I(zi + Az, gy + Ay))’

(wk ayk) eW

Taylor expansion

I(z + Az,y + Ay) = I(z,y) + L (z,y) Az + I (z,y) Ay

f(Az,Ay) = > (L(z,y)Az + I, (z,y)Ay)*
(z,y)eW
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Harris Corner Detector

https://docs.opencv.org/master/dc/d0d/t
utorial_py features_harris.html
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lnvariance

e Can the same feature point be detected after some transformation?
* Translation invariance

e 2D rotation invariance

e Scale invariance

Are Harris corners scale invariant?

corner



SIFT: Scale-invariant feature transform

* Invariant to scaling, rotation and translation
* Partially invariant to illumination changes or affine or 3D projection

* Transforms an image into a large collection of local feature vectors
(SIFT local descriptors)

v|o¢ || Thecircles are scaled and rotated
to reflect the scale and orientation
of the features.
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Keypoint descriptor

David Lowe, Distinctive image features from scale-invariant keypoints, IJCV, 2004. (SIFT has been cited by more than 90,000 times in total!)




SIFT Matching Example
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Simultaneous Localization and Mapping
(SLAM)

* Localization: camera pose tracking
* Mapping: building a 2D or 3D representation of the environment

* The goal here is the same as structure from motion, usually with
video input

ORB-SLAM2
e Point cloud and camera poses




ORB-SLAM

https://webdiis.unizar.es/~raulmur/orbslam/




3D Scanning

e Using laser to create “point clouds”

(a)

Figure 9.26: (a) The Afinia ES360 scanner, which produces a 3D model of an
object while it spins on a turntable. (b) The Focus3D X 330 Laser Scanner, from
FARO Technologies, is an outward-facing scanner for building accurate 3D models
of large environments; it includes a GPS receiver to help fuse individual scans into

a coherent map.




3D Scanning
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Further Reading

e Section 9.5, Virtual Reality, Steven LaValle

 SIFT: Distinctive Image Features from Scale-Invariant Keypoints, David
Lowe, 1JCV’'04

e ORB-SLAM: ORB-SLAM: a Versatile and Accurate Monocular SLAM
System, Mur-Artal et al., T-RO’15




