Image Processing:
Filtering Il

CS 4391 Introduction to Computer Vision
Professor Yapeng Tian
Department of Computer Science

Many slides in this lecture were inspired or adapted from loannis (Yannis) Gkioulekas.



Filtered Image (Gaussian)

Question: How to handle blurry artifacts and preserve image
edges in the filtered image?
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Recap: Image Filtering

Modify the pixels in an image based on some function of a local
neighborhood of each pixel

10|15 | 3 Some function
4151 # 7
11117
Local image data Modified image data

Let f be the image, w be the (2n + 1)x(2n + 1) kernel
weights and h be the filtered output image

h[u,v] = Z Z wik, [f[u + k, v + ]

k=—mnl=
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Recap: Image Filtering Process

1/911/9 1/9
1/9|1/9 (1/9
1/911/9 |1/9

Apply the filter to every pixel

kernel

Noisy Image
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Recap: Image Filtering Process

1/911/9 1/9
1/9|1/9 (1/9
1/911/9 |1/9

Apply the filter to every pixel

kernel

Filtered Image
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Recap: Image Prior: Local Smoothness

* Local natural image regions are typically smooth or uniform

 The overall structures or texture of a natural image often has a more
subtle and gradual variation than image noise

* |mage pixels in a small window (e.g., 5x5) usually

are similar

* Noise values are dramatically changing at arbitrary
directions

* Due to noises, a noisy image have higher local
variations than the clean image
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Recap: Local Smoothness with Mean vs Gaussian
filtering

Both mean and Gaussian utilize local
smoothness prior

* Mean filter assumes all pixels in a local
window are equally important

* Gaussian filter assumes pixels that are closer
to the target pixel are more important

hlu,v] = z Z wik, lf[u+ kv +1] We need to design a better kernel w for improving filtering results.

k=—nl=—n
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The problem with Gaussian filtering

Gaussian kernel
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The problem with Gaussian filtering

Gaussian kernel
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The bilateral filtering solution: Edge-preserving
local smoothness
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bilateral filter kernel

input output
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Bilateral filtering

1
Wm'n,

Z g[ka l]rmn[ka l]f[m +k,n+ l]
k,l

hlm,n| =
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Bilateral filtering

1
h[m7 n] — w. Z-'rmn[ka l]f[m+k7n+l]
mn e

\/
Spatial weighting

glk, 1] = 2702

Assign a pixel a large weight if: 1) it's nearby
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Bilateral filtering

hlm,n| =

> Gl rmnk, 1) fIm + kym + 1]

\/
Spatial weighting  Intensity range weighting

/\ ) xz
20,2
e r
mn
V2 L0,

(kz _|_l2 z = flm,n| — flm+k,n+1]

glk, 1] =

2
210

205° Og Op

Assign a pixel a large weight if: 1) it's nearby and  2) it looks like me
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Bilateral filtering

hlm,n| =

> Gl rmnk, 1) fIm + kym + 1]

k.l

\/
Normalization factor  Spatial weighting Intensity range weighting

Zg[k Wik, 1 n /\

xz = flm,n] — flm+ k,n+1]

O o

Assign a pixel a large weight if: 1) it's nearby and  2) it looks like me
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Implementation: Bilateral filtering

h[m,n| = Wl Z-'rmn[ka l]f[m +k,n +1]

W k]

\/
Normalization factor  Spatial weighting Intensity range weighting

2
= Dol il n A o

glk,1] = >exp(— > )
20
O o
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Bilateral filtering vs Gaussian filtering

Which is which?

him,n] = glk, | flm+k,n+]

k,l
1
hlm, n] = o > glk, Urmnlk, 1) f[m + k,n +1]
mn k,l
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Bilateral filtering vs Gaussian filtering

Gaussian filtering

him,n] = glk, | flm+k,n+]
k,l

Bilateral filtering

1

> glk, Urmnlk, 1) f[m + k,n +1]
k,l
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Bilateral filtering vs Gaussian filtering

Gaussian filtering

him,n| = *f[m—l—k ,n+ ]
Spatial weighting:
favor nearby pixels

Tmn |k, U flm + k,n + ]

Bilateral filtering

him,n| =

Z

mn
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Bilateral filtering vs Gaussian filtering

Gaussian filtering

him,n] = "G f[m + k,n + ]
k,l

: : : Spatial weighting:
Bilateral filtering Os u fasgr'ievgreéi pilzfls

Zg[kal]rmn[ka l]f[m + k,n + l]

k,l
Intensity range weighting:
Or favor similar pixels

z = flm,n] — flm+ k,n+1




Bilateral filtering vs Gaussian filtering

Gaussian filtering

him,n] = "G f[m + k,n + ]
k,l

: : : Spatial weighting:
Bilateral filtering Os u fasgr'ievgreéi pilzfls

blm, ] | > GURraaallyl) flra + o+ 1

k,l
Intensity range weighting:
0} o .
Normalization factor r favor similar pixels

z = flm,n] — flm+ k,n+1




Bilateral filtering vs Gaussian filtering

Gaussian filtering

Smooths everything nearby (even edges)
Only depends on spatial distance

Bilateral filtering

Smooths ‘close’ pixels in space and intensity
Depends on spatial and intensity distance
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aussian filtering visualization

hlm,n] = _f[m+ k,n +1]
k,l
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Bilateral filtering visualization

hlm,n| = Wl Z

Spatial range I ’ Intensity range

v s

Output Bilateral Filter Input

Ton|ky ] f[m + k,n + ]




Exploring the bilateral filter parameter space

o.= 0.1 o.=0.25 (Gaussian blur)

input



The bilateral filtering solution

bilateral filter kernel

input output
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Application: Cartoonization

How would you create this effect?
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Application: Cartoonization

edges from bilaterally filtered image

WL A

A
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: -' Application: Image Denoising with
= Bilateral Filtering

.. Sharper edges

‘o | B - Some thin edges may be reduced
Z - ot regions are not fully smoothed




Image Prior: Non-local smoothness/redundancy

Small patches in natural images tend
to redundantly appear multiple times
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Non-local means Filter

No need to stop at neighborhood. Instead search everywhere in the image.

Given a pixel f (p) at positionp = (py, py), the filter
uses pixels in the whole image to update f(p)

1
h(p) = Wz w(p,q)f(q)
q

SSD(p,q))
202

Weight: w(p, q) = exp(—

Sum of the squared difference between two patches

SSD@.@)= ). D (F(pe+kipy +1) = F(@x +kay + DY

k=—nl=-n

W = Y,w(p,q) is the normalization term
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Fast Implementation of Non-local Means

Scan over the whole image to compute
weights for each pixel is time-consuming

Implementation:

 setasearch window (e.g., 21x21)
with the target pixel position as the
center

* only use pixels inside the window to
compute weights based on patch
similarity

Patch size (e.g., 5x5, 7x7) is much

smaller than the window size
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Non-local means vs bilateral filtering

Non-local means filtering

him,n] =

1
W Zrmn[kal]f[m+kan+l]
mn 7

Intensity range weighting:
Bilateral filtering favor similar pixels (patches
« ., in case of non-local means)

z = flm,n] — flm+ k,n + 1]

Zg[kal]rmn[ka l]f[m + k,n + l]

Spatial weighting:
favor nearby pixels







Summary

Gaussian filtering

Smooths everything nearby (even edges)
Only depends on spatial distance

Bilateral filtering

Smooths ‘close’ pixels in space and intensity
Depends on spatial and intensity distance

Non-local means

Smooths similar patches no matter how far away
Only depends on intensity distance
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Further Reading

Chapters 3.3.1 and 3.3.2, Computer Vision: Algorithms and
Applications, Richard Szeliski

https://en.wikipedia.org/wiki/Non-local _means
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