

Image Processing: Filtering II

CS 4391 Introduction to Computer Vision Professor Yapeng Tian Department of Computer Science

Many slides in this lecture were inspired or adapted from Ioannis (Yannis) Gkioulekas.

Filtered Image (Gaussian)

Noisy Image

Question: How to handle blurry artifacts and preserve image edges in the filtered image?

Recap: Image Filtering

Modify the pixels in an image based on some function of a local neighborhood of each pixel

Local image data

Modified image data

Let f be the image, w be the $(2n + 1) \times (2n + 1)$ kernel weights and h be the filtered output image

$$h[u,v] = \sum_{k=-n}^{n} \sum_{l=-n}^{n} w[k,l]f[u+k,v+l]$$

Recap: Image Filtering Process

Apply the filter to every pixel

Noisy Image

1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9

kernel

Recap: Image Filtering Process

Apply the filter to every pixel

Filtered Image

1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9

kernel

Recap: Image Prior: Local Smoothness

- Local natural image regions are typically smooth or uniform
- The overall structures or texture of a natural image often has a more subtle and gradual variation than image noise

- Image pixels in a small window (e.g., 5x5) usually are similar
- Noise values are dramatically changing at arbitrary directions
- Due to noises, a noisy image have higher local variations than the clean image

Recap: Local Smoothness with Mean vs Gaussian filtering

Both mean and Gaussian utilize local smoothness prior

- Mean filter assumes all pixels in a local window are equally important
- Gaussian filter assumes pixels that are closer to the target pixel are more important

We need to design a better kernel w for improving filtering results.

The problem with Gaussian filtering

HE UNIVERSITY OF TEXAS AT DALLAS

ΠΓ

Why is the output so blurry?

The problem with Gaussian filtering

ID THE UNIVERSITY OF TEXAS AT DALLAS Blur kernel averages across edges

The bilateral filtering solution: Edge-preserving local smoothness bilateral filter kernel

ID THE UNIVERSITY OF TEXAS A DOLDOT blur if there is an edge! How does it do that?

$$h[m,n] = \frac{1}{W_{mn}} \sum_{k,l} g[k,l] r_{mn}[k,l] f[m+k,n+l]$$

٠

Implementation: Bilateral filtering

٠

Which is which?

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$h[m,n] = \frac{1}{W_{mn}} \sum_{k,l} g[k,l] r_{mn}[k,l] f[m+k,n+l]$$

Gaussian filtering

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$h[m,n] = \frac{1}{W_{mn}} \sum_{k,l} g[k,l] r_{mn}[k,l] f[m+k,n+l]$$

Gaussian filtering

Gaussian filtering

Gaussian filtering

Gaussian filtering

Smooths everything nearby (even edges) Only depends on *spatial* distance

Bilateral filtering

Smooths 'close' pixels in space and intensity Depends on *spatial* and *intensity* distance

Gaussian filtering visualization

Bilateral filtering visualization

Exploring the bilateral filter parameter space

input

The bilateral filtering solution

ΠΓ

HE UNIVERSITY OF TEXAS AT DALLAS

Do not blur if there is an edge!

Application: Cartoonization

How would you create this effect?

Application: Cartoonization

edges from bilaterally filtered image bilaterally filtered image

+

Application: Image Denoising with Bilateral Filtering

- Sharper edges
- Some thin edges may be reduced
- Flat regions are not fully smoothed

Image Prior: Non-local smoothness/redundancy

Small patches in natural images tend to redundantly appear multiple times

Non-local means Filter

No need to stop at neighborhood. Instead search everywhere in the image.

Given a pixel f(p) at position $p = (p_x, p_y)$, the filter uses pixels in the whole image to update f(p)

$$h(p) = \frac{1}{W} \sum_{q} w(p,q) f(q)$$

Weight:
$$w(p,q) = \exp(-\frac{SSD(p,q)}{2\sigma^2})$$

Sum of the squared difference between two patches

$$SSD(p,q) = \sum_{k=-n}^{n} \sum_{l=-n}^{n} (f(p_x + k, p_y + l) - f(q_x + k, q_y + l))^2$$

 $W = \sum_{q} w(p,q)$ is the normalization term

Fast Implementation of Non-local Means

Scan over the whole image to compute weights for each pixel is time-consuming Implementation:

- set a search window (e.g., 21x21) with the target pixel position as the center
- only use pixels inside the window to compute weights based on patch similarity

Patch size (e.g., 5x5, 7x7) is much smaller than the window size

Non-local means vs bilateral filtering

Non-local means filtering

$$h[m,n] = \frac{1}{W_{mn}} \sum_{k,l} r_{mn}[k,l] f[m+k,n+l]$$
Bilateral filtering
$$\lim_{x = f[m,n] - f[m+k,n+l]} \lim_{x = f[$$

(patches

Nonlocal Means Filtering

Bilateral Filtering

Gaussian Filtering

Summary

Gaussian filtering

Smooths everything nearby (even edges) Only depends on *spatial* distance

Bilateral filtering

Smooths 'close' pixels in space and intensity Depends on *spatial* and *intensity* distance

Non-local means

Smooths similar patches no matter how far away Only depends on *intensity* distance

Further Reading

Chapters 3.3.1 and 3.3.2, Computer Vision: Algorithms and Applications, Richard Szeliski

https://en.wikipedia.org/wiki/Non-local_means