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Question: How to reduce noises in an image?
4



Image Filtering

• Goal: generate a new image 𝐺 whose pixel values are a combination 
of the original pixel values 𝐹
• Enhance image quality (e.g., denoising, sharpening)
• Extract visual features (e.g., edges, contours)
• Basic computation unit in convolutional neural networks
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𝐹 𝐺  



Noise Reduction as An Example

How was the noisy image generated?
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F[𝑖, 𝑗, 𝑐] = 𝐼[𝑖, 𝑗, 𝑐] + 𝑛[𝑖, 𝑗, 𝑐]
𝑖 ∶	row, 𝑗:column, 𝑐:color, 𝑛: additive noise 
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How to remove the noise	𝑛 from the noisy image ?



Characteristics of Noises and Natural Images

Image noises:
• Random and characterized by high frequency components
• Fewer details or finer textures

Natural images:
• Both low and high frequencies that are more evenly distributed
• More textures, patterns, and shapes with gradual changes in 

intensity or color
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Image Prior: Local Smoothness

• Local natural image regions are typically smooth or uniform
• The overall structures or texture of a natural image often has a more 

subtle and gradual variation than image noise
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• Image pixels in a small window (e.g., 5x5) usually 
are similar 

• Noise values are dramatically changing at arbitrary 
directions



Image Prior: Local Smoothness

• Local natural image regions are typically smooth or uniform
• The overall structures or texture of a natural image often has a more 

subtle and gradual variation than image noise
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• Image pixels in a small window (e.g., 5x5) usually 
are similar 

• Noise values are dramatically changing at arbitrary 
directions

• Due to noises, a noisy image have higher local 
variations than the clean image



Image Filtering for Noise Reduction

Reduce noises by enforcing local smoothness prior
• Make each pixel in a noisy image to be similar to its local 

neighborhoods 
• How? There are many local neighborhoods (e.g., 9 in a 3x3 window)

• A naïve method: replace each pixel value with the mean value of its local 
neighborhoods
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Image Filtering Process
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Image Filtering Process
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Image Filtering

Modify the pixels in an image based on some function of a local 
neighborhood of each pixel
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Slide credit: N. Snavely
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Linear filtering

A simple filtering:  linear filtering (cross-correlation/convolution) 
• Replace each pixel by a linear combination (a weighted sum) of its neighbors

The prescription for the linear combination is called the “kernel” (or 
“mask”, “filter”)
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Slide credit: N. Snavely
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Cross-correlation

This is called a cross-correlation 
operation:

Let      be the image,      be the kernel (of size 
2k+1 x 2k+1), and      be the output image

Can think of as a “dot product” between local neighborhood and kernel for each pixel
Slide credit: N. Snavely
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Convolution
Same as cross-correlation, except that the kernel is “flipped” 
(horizontally and vertically)

Convolution is commutative and associative

This is called a convolution operation:

Slide credit: N. Snavely
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Convolution

Adapted from F. Durand
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Mean filtering
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Slide credit: N. Snavely
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Mean filtering/Moving average

Slide credit: N. Snavely
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Mean filtering/Moving average

Slide credit: N. Snavely

22



Mean filtering/Moving average

Slide credit: N. Snavely
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Mean filtering/Moving average

Slide credit: N. Snavely
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Mean filtering/Moving average

Slide credit: N. Snavely
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Mean filtering/Moving average

Slide credit: N. Snavely
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Linear filters: examples
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Linear filters: examples
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Source: D. Lowe



Linear filters: examples
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Source: D. Lowe



Linear filters: examples
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Source: D. Lowe



Linear filters: examples

Original

111

111

111

Blur (with a mean/box filter)

* =

31

Source: D. Lowe



Linear filters: examples
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Source: D. Lowe



Sharpening
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Source: D. Lowe



Smoothing with mean filter revisited

Source: D. Forsyth
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Block artifacts appear in the outputted image because non-
relevant pixels are assigned the same weights during filtering 
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Gaussian kernel

Source: C. Rasmussen 

• If a neighboring pixel is closer to the current pixel, it will be assigned a larger weight
• The 𝜎 controls the width of the kernel
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Gaussian filters

= 30 pixels= 1 pixel = 5 pixels = 10 pixels
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Slide credit: N. Snavely
A Gaussian filter with a larger 𝜎 will produce a more blurred image



Mean vs. Gaussian filtering

Source: N. Snavely
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Both mean and Gaussian utilize local smoothness prior

• Mean filter assumes all pixels in a local window are 
equally important

• Gaussian filter assumes pixels that are closer to the 
target pixel are more important



Sharpening revisited: What does blurring take away?

original smoothed (5x5)

–

detail

=

sharpened

=

Let’s add it back:

original detail

+ α

(This “detail extraction” operation is also 
called a high-pass filter)

Slide credit: N. Snavely
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Filtered Image Noisy Image

Question: How to handle blurry artifacts and preserve high-
frequency details in the filtered image? 
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Next Class
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Bilateral Filtering

Nonlocal Means Filtering Noisy Image

Gaussian Filtering



Further Reading

Chapters 3.1 and 3.2, Computer Vision: Algorithms and Applications,
Richard Szeliski
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