

Image Formulation: Lighting and Color

CS 4391 Computer Vision Professor Yapeng Tian Department of Computer Science

Why are the apples red?

Lighting

Images cannot exist without light. To produce an image, the scene must be illuminated with one or more light sources.

Basic Behavior of Light

Light can be described in three ways

• Photons: tiny particles of energy moving through space at high speed

• Waves: ripples through space

• Rays: a ray traces the motion of a single hypothetical photon

Interactions with Materials

Wavelengths and Colors

Reflection of Materials

We see objects with different colors because the materials reflect specific colors differently

380	V	450	В	495	G	570 590	620 620	R	750

The Color of an Object Depends Upon the Light Source

Selective Reflection

https://www.youtube.com/watch?v=xA8MT6yhP4w

Blinn-Phong Lighting

"mirror"

Related to specular reflection

- ${\mathcal X}$ Material property that expresses the amount of surface shininess x=100, mild amount of shininess x=10000, almost like a mirror $0.99^{10000} = 2.24^{-44}$
 - Specular reflectance property of the material

$$L = dI \max(0, n \cdot \ell) + sI \max(0, n \cdot b)^x$$

Ambient Lighting

Ambient lighting provides the general illumination of an environment

Independent of light/surface position, viewer, normal

Adding some background color

 $L = dI \max(0, n \cdot \ell) + sI \max(0, n \cdot b)^x + L_a$

Ambient light

Multiple Light Sources and Attenuation

N light sources

$$L = L_a + \sum_{i=1}^{N} dI_i \max(0, n \cdot l_i) + sI_i \max(0, n \cdot b_i)^x$$

Attenuation: the greater the distance, the low the intensity

$$L = L_a + \sum_{i=1}^{N} \frac{1}{k_c + k_l c + k_q c^2} \left(dI_i \max(0, n \cdot l_i) + sI_i \max(0, n \cdot b_i)^x \right)$$

$$c \text{ Light source distance to surface } c \text{ Light source distance } C \text{ Light source } C \text{ Light s$$

Phong Reflection Model

Color Formulation

When the incoming light hits the imaging sensor, light from different parts of the spectrum is integrated into the discrete red, green, and blue (RGB) color values that we see in a digital image.

Mixing different colors can obtain a new one

- Red+green makes yellow
- Red+blue+green makes white

Color Images

Slide Credit: J. Hays

Color Images Combined

Green

Slide Credit: J. Hays

Images in Python

097	097	097	097	097	097	097	097	096	097	097	096	096	096		R				
100	100	100	100	100	100	101	101	102	101	100	100	100	099	L			-		
105	105	105	105	105	105	105	103	102	102	101	103	104	105	96	096	096			
109	109	109	109	109	110	107	118	145	132	120	112	106	103	0	100	099			
113	113	113	112	112	113	110	129	160	160	164	162	157	151)3	104	105	96	096	096
118	117	118	123	119	118	112	125	142	134	135	139	139	175	2	106	103	0	100	099
123	121	125	162	166	157	149	153	160	151	150	146	137	168	52	157	151	3	104	105
127	127	125	168	147	117	139	135	126	147	147	149	156	160	9	139	175	2	106	103
133	130	150	179	145	132	160	134	150	150	111	145	126	121	6	137	168	2	157	151
138	134	179	185	141	090	166	117	120	153	111	153	114	126	.9	156	160	9	139	175
144	151	188	178	159	154	172	147	159	170	147	185	105	122	15	126	121	-6	137	168
152	157	184	183	142	127	141	133	137	141	131	147	144	147	3	114	126	.9	156	160
130	147	185	180	139	131	154	121	140	147	107	147	120	128	5	105	122	-5	126	121
035	102	194	175	149	140	179	128	146	168	096	163	101	125	.7	144	147	3	114	126
			30 1	47 1	85 1	80 1	39 1	31 1	54 1	21 1	40 1	47 1	07 1	4 7	120	128	5	105	122
		0	35 1	02 1	94 1	75 1	49 1	40 1	79 1	28 1	46 1	68 0	96 1	63	101	125	.7	144	147
		Ľ] [130) 147	7 185	5 18(0 139) 13]	L 154	4 12]	1 140) 1	47 1	07 1	4 7	120	128
					035	5 102	2 194	175	5 149	9 140) 179	9 128	8 146	5 1	680	96 1	63	101	125

Slide Credit: D. Fouhey, J. Johnson

Images in Python

Images are matrix / tensor im

im[0,0,0] top, left, red

im[y,x,c]
 row y, column x, channel c

im[H-1,W-1,2]
 bottom right blue

what is the index for bottom right red?

								_												
)97	097	097	097	097	097	097	097	096	097	097	096	096	096		K					
00	100	100	100	100	100	101	101	102	101	100	100	100	099				_			
05	105	105	105	105	105	105	103	102	102	101	103	104	105	96	096	096				
.09	109	109	109	109	110	107	118	145	132	120	112	106	103	0	100	099				
13	113	113	112	112	113	110	129	160	160	164	162	157	151)3	104	105	96	096	096	
18	117	118	123	119	118	112	125	142	134	135	139	139	175	2	106	103	0	100	099	
23	121	125	162	166	157	149	153	160	151	150	146	137	168	52	157	151)3	104	105	
27	127	125	168	147	117	139	135	126	147	147	149	156	160	9	139	175	2	106	103	
33	130	150	179	145	132	160	134	150	150	111	145	126	121	-6	137	168	52	157	151	
38	134	179	185	141	090	166	117	120	153	111	153	114	126	.9	156	160	9	139	175	
44	151	188	178	159	154	172	147	159	170	147	185	105	122	-5	126	121	6	137	168	
52	157	184	183	142	127	141	133	137	141	131	147	144	147	3	114	126	9	156	160	
30	147	185	180	139	131	154	121	140	147	107	147	120	128	5	105	122	15	126	121	
)35	102	194	175	149	140	179	128	146	168	096	163	101	125	.7	144	147	3	114	126	
		1	30 1	47 1	85 1	80 1	39 1	31 1	54 1	21 1	40 1	47 1	07 14	47	120	128	5	105	122	
		0	35 1	02 1	94 1	75 1	49 1	40 1	79 1	28 1	46 1	68 0	96 1	63	101	125	17	144	147	
											47	120	128							
035 102 194 175 149 140 179 128 146 168 090												96 1	63	101	125					

Slide Credit: D. Fouhey, J. Johnson

Few Things to Remember

- Origin is top left
- Rows are first
- Usually referred to as HWC (Height x Width x Channel). But you'll sometimes see CHW (especially with neural networks)
- Typically stored as uint8 [0,255]

Slide Credit: D. Fouhey, J. Johnson

RGB Color Space

<u>Cons</u> 1. Distances don't make sense 2. Correlated

Slide Credit: J. Hays, RGB cube: https://en.wikipedia.org/wiki/RGB_color_model

LAB Color Space

<u>Pros</u> 1. Distances correspond with human judgment 2. Useful for color correction <u>Cons</u> 1. Complex to calculate (don't write it yourself, lots of calculations)

Slide Credit: J. Hays, Lab diagram cube: https://en.wikipedia.org/wiki/CIELAB_color_space

Different Color Spaces

THE UNIVERSITY OF TEXAS AT DALLAS

Different Color Spaces

- RGB: sort of intuitive, standard, everywhere
- HSV: good for picking specific colors, fast to compute from RGB
- YCbCr/YUV: fast to compute, great for compression
- Lab: the right(?) thing to do, but "slow" to compute

RGB space is commonly used to represent colorful images in most of our applications

Color Conversion: One Example

Question: how to convert a RGB image to a Grayscale image?

im[y,x,c]

im[y,x]

RGB Color to Gray Conversion

RGB2Gray function: I = 0.2989 * R + 0.5870 * G + 0.1140 * B

Based on research on human vision, we know that our eyes react to each color in a different manner.

Specifically, our eyes are more sensitive to green, then to red, and finally to blue.

Summary

Lighting Computation:

 compute color given material properties, light source color and position, normal position, view position

Color Space:

- a color can be represented by three primaries, such as RGB
- there are different color spaces, and they can be converted to each other
- im[y,x,c] row, col, channel

Further Reading

Chapters 2.2.1, 2.2.2, and 2.3.2, Computer Vision: Algorithms and Applications, Richard Szeliski

Chapter 7.1, Virtual Reality, Steven LaValle