THE UNIVERSITY OF TEXAS AT DALLAS

Image Formulation: Lighting and Color

CS 4391 Computer Vision
Professor Yapeng Tian
Department of Computer Science

Why are the apples red?

Basic Behavior of Light

Light can be described in three ways

- Photons: tiny particles of energy moving through space at high speed

- Waves: ripples through space
- Rays: a ray traces the motion of a single hypothetical photon

Interactions with Materials

Wavelengths and Colors

Reflection of Materials

We see objects with different colors because the materials reflect specific colors differently

The Color of an Object Depends Upon the Light Source

Selective Reflection

https://www.youtube.com/watch?v=xA8MT6yhP4w

Lambertian Lighting

Diffuse reflection

Blinn-Phong Lighting

Related to specular reflection
a light

"mirror"

$$
L=d I \max (0, n \cdot \ell)+s I \max (0, n \cdot b)^{x}
$$

Ambient Lighting

Ambient lighting provides the general illumination of an environment

Independent of light/surface position, viewer, normal

Adding some background color
Ambient light
$L=d I \max (0, n \cdot \ell)+s I \max (0, n \cdot b)^{x}+L_{a}$

Multiple Light Sources and Attenuation

N light sources

$$
L=L_{a}+\sum_{i=1}^{N} d I_{i} \max \left(0, n \cdot l_{i}\right)+s I_{i} \max \left(0, n \cdot b_{i}\right)^{x}
$$

Attenuation: the greater the distance, the low the intensity

$$
L=L_{a}+\sum_{i=1}^{N} \frac{1}{k_{c}+k_{l} c+k_{q} c^{2}}\left(d I_{i} \max \left(0, n \cdot l_{i}\right)+s I_{i} \max \left(0, n \cdot b_{i}\right)^{x}\right)
$$

c Light source distance to surface
constant linear quadratic attenuation Used by OpenGL for ~ 25 years

Phong Reflection Model

Color Formulation

When the incoming light hits the imaging sensor, light from different parts of the spectrum is integrated into the discrete red, green, and blue (RGB) color values that we see in a digital image.

Mixing different colors can obtain a new one

- Red+green makes yellow
- Red+blue+green makes white

Color Images

Color Images

Combined

Red

Images in Python

Images in Python

Few Things to Remember

- Origin is top left
- Rows are first
- Usually referred to as HWC (Height x Width x Channel). But you'll sometimes see CHW (especially with neural networks)
- Typically stored as uint8 $[0,255]$

RGB Color Space

Pros
1. Simple
2. Common

Cons

1. Distances don't make sense
2. Correlated

LAB Color Space

a
(L=65,b=0)
b
($\mathrm{L}=65, \mathrm{a}=0$)

Different Color Spaces

Different Color Spaces

- RGB: sort of intuitive, standard, everywhere
- HSV: good for picking specific colors, fast to compute from RGB
- $\mathrm{YCbCr} / \mathrm{YUV}$: fast to compute, great for compression
- Lab: the right(?) thing to do, but "slow" to compute

RGB space is commonly used to represent colorful images in most of our applications

Color Conversion: One Example

Question: how to convert a RGB image to a Grayscale image?

im[y,x,c]

$i m[y, x]$

RGB Color to Gray Conversion

RGB2Gray function: $\mathrm{I}=0.2989$ * $\mathrm{R}+0.5870$ * $\mathrm{G}+0.1140$ * B

Based on research on human vision, we know that our eyes react to each color in a different manner.

Specifically, our eyes are more sensitive to green, then to red, and finally to blue.

Summary

Lighting Computation:

- compute color given material properties, light source color and position, normal position, view position
- light

Color Space:

- a color can be represented by three primaries, such as RGB
- there are different color spaces, and they can be converted to each other
- im[y,x,c] - row, col, channel

Further Reading

Chapters 2.2.1, 2.2.2, and 2.3.2, Computer Vision: Algorithms and Applications, Richard Szeliski

Chapter 7.1, Virtual Reality, Steven LaValle

