THE UNIVERSITY OF TEXAS AT DALLAS

Image Formulation: Camera Models

CS 4391 Computer Vision
Professor Yapeng Tian
Department of Computer Science

The objects are essentially 3 D .

How to project 3D into 2D and capture these images?

Camera Models: 3D-to-2D Projection

Q1: Are three balls in a same size?

Q2: Are the two rail lines parallel?

A1\&A2: No?

I] D THE UNIVERSITY OF TEXAS AT DALLAS

A smaller window

U[D the university of texas at dallas

Nature Example of Pinhole Camera

Pinhole Camera

Pinhole Camera

Natural Pinhole Cameras

Object: the sun Pinhole: gaps between the leaves Image plane: the ground

Central Projection in Camera Coordinates

$$
\begin{aligned}
& \text { Camera } \\
& \text { coordinates }
\end{aligned} P=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \xrightarrow{\text { Nonlinear }} \rightarrow P^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \quad\left\{\begin{array}{l}
x^{\prime}=f \frac{x}{z} \\
y^{\prime}=f \frac{y}{z}
\end{array}\right.
$$

Homogeneous Coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

homogeneous image coordinates

$$
(x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

homogeneous scene coordinates

Conversion

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

$$
\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Central Projection with Homogeneous Coordinates

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \longrightarrow\left[\begin{array}{l}
f \frac{x}{z} \\
f \frac{y}{z}
\end{array}\right]} \\
& \text { Central projection } \\
& {\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \longrightarrow\left[\begin{array}{c}
f x \\
f y \\
z
\end{array}\right]=\underset{ }{\left[\begin{array}{llll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right]}\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]}
\end{aligned}
$$

Principal Point Offset

Principle point: projection of the camera center

Principal point $\mathbf{p}=\left(p_{x}, p_{y}\right)$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
f \frac{x}{z} & +p_{x} \\
f \frac{y}{z} & +p_{y}
\end{array}\right]} \\
& {\left[\begin{array}{llll}
f & & p_{x} & 0 \\
& f & p_{y} & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]}
\end{aligned}
$$

From Metric to Pixels

From Metric to Pixels

Metric space, i.e., meters $\left[\begin{array}{llll}f & & p_{x} & 0 \\ & f & p_{y} & 0 \\ & & 1 & 0\end{array}\right]$

Pixel space

$$
\left[\begin{array}{cccc}
\alpha_{x} & & x_{0} & 0 \\
& \alpha_{y} & y_{0} & 0 \\
& 1 & 0
\end{array}\right] \quad \begin{aligned}
& \alpha_{x}=f m_{x} \\
& \alpha_{y}=f m_{y} \\
& x_{0}=p_{x} m_{x} \\
& \\
&
\end{aligned}
$$

Axis Skew

The skew parameter will be zero for most normal cameras.

$$
\left[\begin{array}{cccc}
\alpha_{x} & & x_{0} & 0 \\
& \alpha_{y} & y_{0} & 0 \\
& & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \longrightarrow\left[\begin{array}{c}
\alpha_{x} \frac{x}{z}+x_{0} \\
\alpha_{y} \frac{y}{z}+y_{0}
\end{array}\right] \quad\left[\begin{array}{cccc}
\alpha_{x} & -\alpha_{x} \cot (\theta) & x_{0} & 0 \\
& \frac{\alpha_{y}}{\sin (\theta)} & y_{0} & 0 \\
& & 1 & 0
\end{array}\right]
$$

Camera Intrinsics

$$
\left[\begin{array}{cccc}
\alpha_{x} & -\alpha_{x} \cot (\theta) & x_{0} & 0 \\
& \frac{\alpha_{y}}{\sin (\theta)} & y_{0} & 0 \\
& & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Camera intrinsics

$$
K=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right] \quad \underset{3 \times 1}{\mathbf{X}} \underset{3 \times 3}{ } \underset{3 \times 4}{ } \underset{4 \times 1}{ }
$$

Camera Extrinsics: Camera Rotation and Translation

3D Translation

$$
\left(x_{1}, y_{1}, z_{1}\right) \mapsto\left(x_{1}+x_{t}, y_{1}+y_{t}, z_{1}+z_{t}\right)
$$

$\left(x_{3}, y_{3}, z_{3}\right)$

$$
\left(x_{2}, y_{2}, z_{2}\right) \mapsto\left(x_{2}+x_{t}, y_{2}+y_{t}, z_{2}+z_{t}\right)
$$

$$
\text { (} \left.x_{1}, y_{1}, z_{1}\right)
$$

$$
\left(x_{3}, y_{3}, z_{3}\right) \mapsto\left(x_{3}+x_{t}, y_{3}+y_{t}, z_{3}+z_{t}\right)
$$

$$
\mathbf{v}_{\mathbf{1}} \mapsto \mathbf{v}_{\mathbf{1}}+\mathbf{t}
$$

$$
\mathbf{v}_{\mathbf{2}} \mapsto \mathbf{v}_{\mathbf{2}}+\mathbf{t}
$$

$$
\mathbf{v}_{\mathbf{3}} \mapsto \mathbf{v}_{\mathbf{3}}+\mathbf{t}
$$

$$
\text { 3D Translation } \mathbf{t}=\left(x_{t}, y_{t}, z_{t}\right)
$$

3D Rotation

The yaw, pitch, and roll rotations can be combined sequentially to attain any possible 3D rotation.

$$
\begin{aligned}
& R(\alpha, \beta, \gamma)=R_{y}(\alpha) R_{x}(\beta) R_{z}(\gamma) \\
& R_{z}(\gamma)=\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
0 & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned} R_{x}(\beta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \beta \\
0 & -\sin \beta & -\sin \beta \\
\operatorname{cin} \beta & \cos \beta
\end{array}\right] \quad R_{y}(\alpha)=\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right] .
$$

Camera Projection Matrix $P=K[R \mid \mathbf{t}]$

Back-projection in World Coordinates

$$
\begin{gathered}
P=K[R \mid \mathbf{t}] \\
\mathbf{x}=P \mathbf{X}
\end{gathered}
$$

- The camera center O is on the ray
- $P^{+} \mathbf{X}$ is on the ray

$$
P^{+}=P^{T}\left(P P^{T}\right)^{-1}
$$

Pseudo-inverse
The ray can be written as
$P^{+} \mathbf{x}+\lambda O$

- A pixel on the image backprojects to a ray in 3D

Back-projection in Camera Coordinates

Summary: Camera Models

Camera projection matrix: intrinsics and extrinsics

$P=K[R \mid \mathbf{t}]$

$3 \times 3 \quad 3 \times 4$

Camera intrinsics
Camera extrinsics:
rotation and translation

Interpreting Perceived Images

The lengths of two lines $P_{1} P_{2}$ and $P_{3} P_{4}$ in 3D space are equal

$$
P=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \rightarrow P^{\prime 2 D}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \quad\left\{\begin{array}{l}
x^{\prime}=f \frac{x}{z} \\
y^{\prime}=f \frac{y}{z}
\end{array}\right.
$$

Why is $P_{3}^{\prime} P_{4}^{\prime}$ shorter than $P_{1}^{\prime} P_{2}^{\prime}$ in the 2D image?

- For the two 3D points P_{1} and P_{3}, let's assume we have $x_{1}=x_{3}, y_{1}=y_{3}$, and $z_{1}<z_{3}$ in the 3D coordinate system
- After 3D-to-2D projection, we have $x_{1}^{\prime}>x_{3}^{\prime}$ and $y_{1}^{\prime}>y_{3}^{\prime}$
- Larger depth and shorter length due to the projection

Further Reading

Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Course Notes 1: Camera Models

Multiview Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Chapter 6, Camera Models

Computer Vision: Algorithms and Applications. Richard Szeliski, Chapter 2.1.4, 3D to 2D projections

