Image Formulation: Camera Models
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The objects are essentially 3D.

How to project 3D into 2D and capture these images?



Camera Models: 3D-to-2D Projection
Yy ' x 1Y

World Coordinates
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Q1: Are three balls
in @ same size?

Q2: Are the two rail
lines parallel?

Al1&A2: No?
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A Living Room
What objects or scenes?



Largely opened window

Mirror image
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A smaller window
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Nature Example of Pinhole Camera

Flipped image " Outdoor scenes
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Pinhole Camera

object barrier film

aperture

~
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Pinhole Camera
f focal length

< >
1 1

image

plane 6/

/ pinhole " virtua

image

Rotate the image plane by 180 Cannot be implemented in practice

Useful for theoretic analysis
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Natural Pinhole Cameras

image ﬁ
plane
pinhole " Virtual —
image

Object: the sun
Pinhole: gaps between the leaves

Image plane: the ground
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Central Projection in Camera Coordinates

|

P/ E — i

VL
[« | X
C X Nonlinear _X'_ X'= f —
amgra pP— y P = < Z
coordinates y' y
Z -7 - y'=1 =
| < \ 7

ﬁI-D THE UNIVERSITY OF TEXAS AT DALLAS



Homogeneous Coordinates
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Central Projection with Homogeneous Coordinates
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Central projection
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Principal Point Offset

Principle point: projection
of the camera center
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N
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From Metric to Pixels

Retina plane

Digital image

Pixels, bottom-left coordinate systems
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From Metric to Pixels

Metric space, i.e., meters I f P 0 )
f py O
I 0O
Pixel space _aa; o 0 Oy = fmx
- 4 X0 = PNy
Mg, My Number of pixel per unit distance Yo = Pyllty
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Axis Skew
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N image plane
Physical
\I retiynsac
The skew parameter will be zero for most normal cameras.
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https://blog.immenselyhappy.com/post/camera-axis-skew/
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Camera Intrinsics
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Camera intrinsics
o, S X

K = ay Yo| X = K[llo]Xcam

1 3x1 3x3

4 4x1

Homogeneous coordinates
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Camera Extrinsics: Camera Rotation and

Translation
Y +.,  3DRotation R Y

World Coordinates

Xeam = RX + ¢

Euclidean coordinates
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3D Translation
(xlaylazl) — (CIJ‘1 - Lt, Y1 T Y, 21 T Zt)
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(x3ay3723) (CE?) T Lt, Y3 T Y, 23 T Zt)
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3D Translation t p— (:Ijt’ yt7 Zt)
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3D Rotation

The yaw, pitch, and roll rotations can be combined sequentially to attain
any possible 3D rotation.

Ay
()
Yaw
R(Oz, B, 7) — Ry(a)Ra:(/B)Rz(’y)
&
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Camera Projection Matrix P = K[th]

Homogeneous coordinates - -

x = K[I|0]Xcam *=| o v
= K|R|t|X

3x1 3X 3x4 4x1

| * \
Image coordinates \World coordinates

Camera extrinsics:
Camera intrinsics rotation and translation

>
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Back-projection in World Coordinates

 The camera center O is on the ray

. P_l_X is on the ray
pt = pH(ppPH!

Pseudo-inverse

P — K[R‘t] The ray can be written as
x = PX PTx 4+ \O

« A pixel on the image backprojects to a ray in 3D
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Back-projection in Camera Coordinates
P = KJ[I|0]

x = K|I10|Xcam
N Image K_lx

Camera Coordinates ; ¢ _ T -
6 pixel (2, y) 3D point with depth d : (% 1 X
. ..'. - _d w_pw -
d 3D point 7.
3D camera coordinates d Y~ Py
Sy
d
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Summary: Camera Models

Camera projection matrix: intrinsics and extrinsics

P = K[R|t
g

Camera extrinsics:
rotation and translation

Camera intrinsics
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Interpreting Perceived Images

The lengths of two lines P, P, and P;P, in 3D space are equal
7] (

X

3D x 2D _X’_ x'=f —

P = y S P = ’ ) Z

y

i _y — ':f_
‘b _Z— Ly V4

Why is P;P, shorter than P; P, in the 2D image?

* For the two 3D points P; and P;, let's assume we have
X1 = X3,Y1 = Y3, and z; < zz in the 3D coordinate system

« After 3D-to-2D projection, we have x; > x; and y; > y3

« Larger depth and shorter length due to the projection
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Further Reading

Stanford CS231A: Computer Vision, From 3D Reconstruction to
Recognition, Course Notes 1: Camera Models

Multiview Geometry in Computer Vision, Richard Hartley and Andrew
Zisserman, Chapter 6, Camera Models

Computer Vision: Algorithms and Applications. Richard Szeliski,
Chapter 2.1.4, 3D to 2D projections
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https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf
https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZcontents.pdf

