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Image Classification

ImageNet dataset
* Training: 1.2 million images
* Testing and validation: 150,000 images
* 1000 categories

n02119789: kit fox, Vulpes macrotis

n02100735: English setter

n02096294: Australian terrier

n02066245: grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus
n02509815: lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens
n02124075: Egyptian cat

n02417914: ibex, Capra ibex

n02123394: Persian cat

n02125311: cougar, puma, catamount, mountain lion, painter, panther, Felis concolor
n02423022: gazelle
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https://image-net.org/challenges/LSVRC/2012/index.php

Vision + Language

Image captioning

Object grounding

Visual question answering

Representation learning with images and languages

Text-to-Image Generation
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Image Captioning

Automatically generate texture descriptions of images

the person is riding a surfboard in the ocean
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https://www.tensorflow.org/tutorials/text/image_captioning

Image Captioning with RNNs

* Image embedding

phy by = Whi|CNNy (I)]

Yt

“straw” “hat”

Won  Hidden state attime t

hi hy = f(Whaozy + Whphe—1 +bp +1(E = 1) © by)

Wha \ \

Parameters

START “straw” “hat” * Word embedding x; = W, II;
. output Yr = softmax(Wophs + b,)

Deep Visual-Semantic Alignments for Generating Image Descriptions. Karpathy & Fei-fei, CVPR, 2015
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Image Captioning with RNNs

START “Straw" “hat" man in black shirt is playing guitar. consFructior? worker in orange safety
vest is working on road.

Deep Visual-Semantic Alignments for Generating Image Descriptions. Karpathy & Fei-fei, CVPR, 2015
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Image Captioning with Attentions

A___|
bird

flying

over

14x14 Feature Map

d
body
of
water
L. Input 2. Convolutional 3., RNN with attention 4. Word by
Image  Feature Extraction over the image word
generation

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al., PMLR, 2015.
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Image Captioning with Attentions

BLEU
Dataset Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR
Google NIC(Vinyals et al., 2014)T* 63 41 27 — —
FlickrSk Log Bilinear (Kiros et al., 2014a)° 65.6 424 27.7 17.7 17.31
Soft-Attention 67 44.8 29.9 19.5 18.93
Hard-Attention 67 45.7 314 21.3 20.30
Google NICT°* 66.3 42.3 27.7 18.3 —
: Log Bilinear 60.0 38 254 17.1 16.88
Flickr30k Soft-Attention 667 434 288 19.1 18.49
Hard-Attention 66.9 43.9 29.6 19.9 18.46
CMU/MS Research (Chen & Zitnick, 2014)¢ — — — — 20.41
MS Research (Fang et al., 2014)T¢ — — — — 20.71
BRNN (Karpathy & Li, 2014)° 64.2 45.1 304 20.3 —
COCO Google NICT°> 66.6 46.1 32.9 24.6 —
Log Bilinear® 70.8 48.9 34.4 24.3 20.03
Soft-Attention 70.7 49.2 34.4 24.3 23.90
Hard-Attention 71.8 50.4 35.7 25.0 23.04

METEOR (Metric for Evaluation of Translation with Explicit ORdering)

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al., PMLR, 2015.
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https://en.wikipedia.org/wiki/BLEU

Object Grounding

A man with pierced ears is wearing glasses and an orange hat.
A man with glasses is wearing a beer can crotched hat.

A man with gauges and glasses is wearing a Blitz hat.

A man in an orange hat starring at something.

A man wears an orange hat and glasses.

Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models. Plummer et al., ICCV, 2015.
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Object Grounding

set of images
features

with white paws jumps over
in front of _

1 2D positiqnal predicted
— embedding boxes
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A cat W|t_h white paws jumps ov,fer RoBERTa = R
a fence in front of a yellow tree 0
sequence of o no object
text features

MDETR - Modulated Detection for End-to-End Multi-Modal Understanding. Kamath et al., 2021
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Object Grounding

Soft token prediction

* For each detected bounding, predict a probability distribution over the tokens
in the input phase

maximum number of tokens: 256

Alcat with white paws jumps over Eiféie in front of EIjSlIOWIeE o

MDETR - Modulated Detection for End-to-End Multi-Modal Understanding. Kamath et al., 2021
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Object Grounding

a pole: 0.99

i one small boy: 0.9-8 =
i 7

A man: 1.00
a bronze colored yo - yo: 0.97

Wi

a white t - shirt: 1.00 =5

(a) “one small boy climbing a (b) “A man talking on his cellphone next to a (€)% man i arwhite:t-shirt doesia ek with 2 bronzeieol ored o yo

pole with the help of another jewelry store”
boy on the ground”
MDETR - Modulated Detection for End-to-End Multi-Modal Understanding. Kamath et al., 2021
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Visual Question Answering

* Input
 Animage
» Afree-form, open-
ended, natural
language question
* Output
» Case 1: open-ended
answer
» Case 2: multiple-
choice task

What color are her eyes? How many slices of pizza are there?

What is the mustache made of? Is this a vegetarian pizza? accuracy = min(T1umans that provided that answer

3

71)

VQA: Visual Question Answering. Agrawal et al., ICCV, 2015
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Visual Question Answering

4096 output units from last hidden layer 1024
(VGGNet, Normalized)

1024 1000 1000

' Convolution Layer Fully-Connected MLP
Convolution Layer Pooling Layer  +Non-Linearity Pooling Layer

+ Non-Linearity

Fully-Connected

) IIZH

2X2X512 LSTM

“How many horses are in this image?”

1024

POIT’It-‘WIS‘e Fully-Connected Softmax
multiplication

Top K most frequent answers

Fully-Connected

VQA: Visual Question Answering. Agrawal et al., ICCV, 2015
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CLIP: Contrastive Language-Image Pre-Training

Contrastive pre-training: representation learning
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* 400 million (image, text) pairs from Internet

Learning Transferable Visual Models From Natural Language Supervision. Radford, et al., 2021
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CLIP: Contrastive Language-Image Pre-Training

Zero-shot classification (no training on target datasets)

(2) Create dataset classifier from label text

plane S
ear

A photo of - Text
. »
a {object}. Encoder

bird /

(8) Use for zero-shot prediction v v \ 4 \ 4

T S Tl T ? T 3 TN

~—_

Image
{1 I,'T I;'T I,'T . I,'T
Encoder 1 1T LTy | LT3 'y

A photo of
a dog.

Learning Transferable Visual Models From Natural Language Supervision. Radford, et al., 2021
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Text2lmage

’A street sign that reads ’A zombie in the ’An image of an animal "An illustration of a slightly ’A painting of a ’A watercolor painting of a ’A shirt with the inscription:

“Latent Diffusion” ’ style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!” ’

‘.‘

Generative
Models!

-

High-Resolution Image Synthesis with Latent Diffusion Models. Rombach et al., CVPR, 2022.
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Stable Diffusion

4 Y~ Latent Space

E H Diffusion Process

Denoising U-Net €g

6onditionina

entations

D

: ]
Elxel Spacg
.

denoising step crossattention  switch  skip connection concat & /
High-Resolution Image Synthesis with Latent Diffusion Models. Rombach et al., CVPR, 2022.
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Summary

Vision + language tasks
* Image captioning
* Object/phase grounding
* Visual question answering
* Image-text retrieval
* Text2lmage

Representation learning (Pre-training)
* Learning image-text representations from large numbers (image, text) pairs
* Fine-turning for downstream tasks
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Human: Multisensory Perception

 We live in a multisensory world
 What we see can help us listen, what we hear can help us see

* Humans unconsciously integrate information from different
modalities in daily perception experience

the McGurk Effect [VicGurk and MacDonald, 1976]
Video Credit:
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https://www.youtube.com/watch?v=2k8fHR9jKVM

Computational Multisensory Perception

* Learn functions (e.g., neural networks) to model and understand
auditory and visual inputs

event label,
Y sounding object
location, ...
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Audio-Visual Matching Puzzle
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Data Prior: Natural Semantic Correspondence

Guitar sound Drizzle
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Both sound and sight carry semantic information
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Data Prior: Natural Temporal Synchronization

The two modalities carry temporally aligned content.
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https://www.youtube.com/watch?v=2k8fHR9jKVM

Data Prior: Natural Spatial Correspondence

Spatial audio can indicate sound source locations
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Audio-visual Boosting

* Audio-visual Recognition
* Speech Recognition
Speaker Recognition
Action Recognition
Emotion Recognition

* Uni-modal Enhancement
* Speech Enhancement/Separation
* Object Sound Separation
* Face Super-resolution/Reconstruction

Cross-modal Perception

* Cross-modal Generation

¢ Mono Sound Generation
Spatial Sound Generation
Video Generation
Depth Estimation

* Audio-visual Transfer Learning

¢ Cross-modal Retrieval

J J

Audio-visual Collaboration
* Audio-visual Representation Learning
* Audio-visual Localization
* Sound Localization in Videos
* Audio-visual Saliency Detection
* Audio-visual Navigation

* Audio-visual Event Localization/Parsing

* Audio-visual Question Answering/Dialog

Learning in Audio-visual Context: A Review, Analysis, and New Perspective. Wei et al., ArXiv, 2022.
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Vision + Audio
Audio-visual sound separation
Sounding object localization
Audio-visual video parsing

Cross-model generation
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Audio-Visual Sound Separation

—

Guitar

=)
)

Violin

Audio mixture

uolesedas

* Separate individual sounds from the audio mixture
* Incorporate visual scenes as the separation condition
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Current Approaches: Mix-and-Separation

Ny - Assumptions:

* Single-source training video clips
M e All visual objects are sounding

[Ephrat et al. 2018; Owens & Efros 2018 ; Zhao et al. 2018; Afouras et al. 2018; Gao & Grauman 2019; Gan et al. 2020]
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Sound of Pixels

: Video Analysis Network
Input video frames (1) : K image
B l - " Dilated |__, | ;E: channels
= : et ..
3 Dilated "8
R _—
et ] T
Dilated : . &
ResNet 2
"""" Audio Analysis Network | FARIRCERCD

masks M
(one per x,y location)

Input audio (S) Audio U-Net

Sound of Pixels. Zhao et al., ECCV, 2018.
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Sound of Pixels
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https://www.youtube.com/watch?v=2eVDLEQlKD0

Sounding Object Localization

Spatially localize sound sources in video frames

Sound Localization
in Videos
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Sounding Object Localization

___________________________________
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Utilize audio-visual cross-modal
attention to capture sounding
objects in video frames Localization results

Audio-Visual Event Localization in Unconstrained Videos. Tian et al., ECCV, 2018.
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Universal Video Scenes

Videos contain various and diverse temporal video events, which are
either audible (audio event), visible (visual event), or both (audio-visual
event)

Audio-VisuaI Event:
Visual Event: Dog Basketball
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Questions for Understanding Video Scenes

These audio-visual examples are ubiquitous, which leads us to some
basic questions

What events are in a video?

Which modalities perceive the events?
Where are these events?

How can we effectively detect them?
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Modality-Aware Scene Understanding

Audio-visual video parsing - recognizes event categories bind to
sensory modalities, and meanwhile, finds temporal boundaries of when
such an event starts and ends.

Audio:! [Os Basketball 2% [3s Basketball 10]
[43 Dog 8%
Visual:: s Basketal 0]
|
[ZsSpeech 34 S
[23 Dog 55]
Adiovisuall B b e
1
S
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Cross-Modal Generation

* Visual to sound generation

 Audio-driven visual generation (e.g., talking face)

: OO
; = W | e =
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Visual to Sound: Generating Natural Sound for Videos in the Wild. Zhou et al., CVPR, 2018.
MakeltTalk: Speaker-Aware Talking-Head Animation. Zhou et al., SIGGRAPH Asia, 2020.
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Visual to Sound
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https://www.youtube.com/watch?v=Kgy919U295c

Audio to Visual: Talking Head Generation

MakeltTalk
Spukcr-A\un Talking Head Animation

Seg - M b
Brbog '@ S -
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o ﬂ ﬂ
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https://www.youtube.com/watch?v=vUMGKASgbf8

Further Reading

Deep Visual-Semantic Alignments for Generating Image Descriptions, 2015
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, 2015

MDETR - Modulated Detection for End-to-End Multi-Modal Understanding, 2021

VQA: Visual Question Answering, 2015
Learning Transferable Visual Models From Natural Language Supervision, 2021

Sound of Pixels, 2018
Audio-Visual Event Localization in Unconstrained Videos, 2018
Unified Multisensory Perception: Weakly-Supervised Audio-Visual Video Parsing, 2020

Visual to Sound: Generating Natural Sound for Videos in the Wild, 2018
MakeltTalk: Speaker-Aware Talking-Head Animation, 2020.
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https://arxiv.org/abs/1412.2306
https://arxiv.org/abs/1502.03044
https://arxiv.org/abs/2104.12763
https://arxiv.org/abs/1505.00468
https://arxiv.org/abs/2103.00020
http://sound-of-pixels.csail.mit.edu/
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yapeng_Tian_Audio-Visual_Event_Localization_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yapeng_Tian_Audio-Visual_Event_Localization_ECCV_2018_paper.pdf
https://arxiv.org/pdf/2007.10558.pdf
https://arxiv.org/abs/1712.01393
https://arxiv.org/abs/2004.12992

