3D Reconstruction
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A lot of slides borrowed from Prof. Yu Xiang and Prof. Andreas Geiger



3D Reconstruction

How to obtain 3D models of objects or scenes?
* Stereo matching

* SfM and SLAM
* 3D scanning

* Multi-view stereo

* 3D from a single 2D

3D Reconstruction
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Triangulation-based 3D Scanner

Laser source

Projection
ens

Baseline
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https://3dscanningservices.net/blog/need-know-3d-scanning/

Triangulation-based 3D Scanner

Digital Michelangelo Project (1990)
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https://accademia.stanford.edu/mich/

Microsoft Kinect 1

Structured light infrared (IR)
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Range Data Merging

Each scan/capture generates a depth
image or a point cloud

How can we combine these data into a

3D model?

 Alignment/registration
* E.g., iterative closest point (ICP) algorithm

* Merging
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http://www.open3d.org/docs/latest/tutorial/Basic/icp_registration.html

Volumetric Integration
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A Volumetric Method for Building Complex Models from Range Images. Curless & Levoy. SIGGRAPH’96.
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Volumetric Integration

Signed Distance Function (SDF)
(P: Q C IR3 — R Signed distance to the closest object boundary

Q+
0>0

outside

Moo

0=0

interface

ﬁl-D THE UNIVERSITY OF TEXAS AT DALLAS



(c) Generated SDF.
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Volumetric Integration

Range surface

Vol% SDF for the range image

Near | Wi(x)D;(x) + wit1(x)di+1(x)

Wi(x) + wit1(x)

Dit1(x) =

4.
Sensor\
Wit1(x) = Wi(x) + wit1(x)

D ‘7< N %{Z ) \

surface Weight function

Zero-crossing New zero-crossing
(isosurface)

Repeat
A Volumetric Method for Building Complex Models from Range Images. Curless & Levoy. SIGGRAPH’96.
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Volumetric Integration

Image Single scan Merged scan
A Volumetric Method for Building Complex Models from Range Images. Curless & Levoy. SIGGRAPH96.
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KinectFusion

Single scan Rendered normal map Rendered 3D model
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Image-based 3D Reconstruction

A set of images 3D model

Multi-View reo: A Tutorial. Y. ka Furukawa an rlos Hernandez
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Image-based 3D Reconstruction Pipeline

.

Input Images Camera Poses Dense Correspondences

|

X
New zero-crossing

3D Reconstruction Depth Map Fusion Depth Maps
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Humans recognize 3D from a single 2D image
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L Can we learn to mfer 3D from a 2D |mage’?
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3D Reconstruction from a 2D Image

Input Images Neural Network 3D Reconstruction
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What is a good output 3D representation?
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IONS

3D Representat

Voxels:

Discretization of 3D space into grid

Easy to process with neural networks

Cubic memory O(n3) = limited resolution

[Maturana et al., IROS 2015]

1]
g
]
=
J
a
<
"]
J
o
1
=
e
o
S
=
2]
2 4
w
=
Z
=
w
o
=
_D
— |




3D Representations

Points e
* Discretization of surface into 3D points a
* Does not model connectivity / topology
* Limited number of points
* Global shape description

[Fan et al., CVPR 2017]
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3D Representations

Meshes
e Discretization into vertices and faces

* Limited number of vertices / granularity

* Requires class-specific template — or —

e Leads to self-intersections
e

WA
vertices edges faces [Groueix et al., CVPR 2018]
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3D Representations

Implicit 3D representation

* Implicit representation = No discretization
* Arbitrary topology & resolution

* Low memory footprint

* Not restricted to specific class
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Occupancy Network for 3D Reconstruction

Key idea
Do not represent 3D shape explicitly

* Instead, consider surface implicitly as decision
boundary of a non-linear classifier:

fo :R®x X —[0,1]

] \

3D location  |npyt for 3D

reconstruction:
image/point cloud

Occupancy probability

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR’19
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Occupancy Network for 3D Reconstruction

Training
Binary cross-
entropyloss
Bl K
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3D p0|r_1tjfor image i  Ground truth
image i

OCcupancy

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR’19

ﬁI-D THE UNIVERSITY OF TEXAS AT DALLAS



Occupancy Network for 3D Reconstruction

Input  3D-R2N2  PSGN  Pix2Mesh AtlasNet Ours
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Continuous shape representation ‘ . \ ; ; |

Single image 3D reconstruction

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR’19
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Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR’19



https://avg.is.mpg.de/publications/occupancy-networks

Summary

* 3D scanning and Multiview stereo pipeline

* Explicit 3D representations
* Voxels, points, meshes

* Implicit 3D representations
 Learn a function to represent the 3D shape (occupancy, SDFs, radiance fields)
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Further Reading

 Chapter 13, Computer Vision, Richard Szeliski

A Volumetric Method for Building Complex Models from Range Images.
Curless & Levoy. SIGGRAPH’96.

. g/(l)ullgi-View Stereo: A Tutorial. Yasutaka Furukawa and Carlos Hernandez,

 Occupancy Network

* DeepSDF

ﬁI-D THE UNIVERSITY OF TEXAS AT DALLAS


https://arxiv.org/abs/1812.03828
https://arxiv.org/abs/1901.05103

Project Presentation

Presentation (Slides)
* Introduction: Project title, group members, problem overview (1 min)

* Method: your approach (2 mins)
 Results: your data and experimental results to showcase your method (2 mins)

* QA (1 min)
Each group has 6 minutes for the presentation and questions

* Please use slides to present your work
* Show a demo of the project if you have one
* All group members should show up

Evaluation criteria

* The grading will be based on the overall quality of the presentation in terms of
content, clarity, and question answering
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Presentation Order and Submission

 The presentation order was randomly generated
 Set1(Wednesday 11/29): 8, 1, 23, 25, 13, 9, 16, 24, 15
« Set2 (Monday 12/04): 18, 19, 27, 11, 7, 14, 12, 17, 10
 Set 3 (Wednesday 12/06): 3, 6, 20, 2, 21, 22, 26, 5, 4

* Please submit the following items to eLearning. You can zip all the files. |
will download your submission a day prior to your presentation. To save
time and prevent potential technical issues, you will use my computer for
the presentation
e (Required) Presentation slides in pdf/pptx format
e (Optional) A demo video in mp4 format if you have one
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