

Epipolar Geometry and Stereo

CS 4391 Introduction to Computer Vision Professor Yapeng Tian Department of Computer Science

Slides borrowed from Professor Yu Xiang

Depth Perception

Metric

• The car is 10 meters away

Ordinary

• The tree is behind the car

Depth Cues

Information for sensory stimulation that is relevant to depth perception

Monocular cues: single eye

Stereo cues: both eyes

"Paris Street, Rainy Day," Gustave Caillebotte, 1877. Art Institute of Chicago

- Texture of the bricks
- Perspective projection
- Etc.

Retinal image size

Height in visual field

• The closer to the horizon, the further the perceived distance

size constancy scaling

Motion parallax

• Parallax: relative difference in speed

Further objects move slower

Closer objects have larger image displacements than further objects

Monocular Depth Estimation

https://heartbeat.fritz.ai/research-guide-for-depth-estimation-with-deep-learning-1a02a439b834

Stereo Depth Cues

Binocular disparity

• Each eye provides a different viewpoint, which results in different images on the retina

Epipolar Geometry

The geometry of stereo vision

- Given 2D images of two views
- What is the relationship between pixels of the images?
- Can we recover the 3D structure of the world from the 2D images?

Wikipedia

Geometry of Stereo Vision

Basics: points and lines

Homogeneous representation of lines

A line in a 2D plane
$$ax + by + c = 0$$
 $(a, b, c)^T$

$$k(a, b, c)^T$$
 represents the same line for nonzero k
A point lies on the line $\mathbf{x}^T \mathbf{l} = 0$ $\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ $\mathbf{l} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

https://www.mathsisfun.com/algebra/vectors-cross-product.html

 (c_x, c_v, c_z)

a×b

 (b_x, b_y, b_z)

Points and Lines

Intersection of lines

section of lines

$$\mathbf{l} = (a, b, c)^T \quad \mathbf{l}' = (a', b', c')^T$$
Example: The cross product of a = (2,3,4) and b = (5,6,7)

$$\cdot c_x = a_y b_z - a_y b_x = 3x7 - 4x6 = -3
$$\cdot c_y = a_y b_z - a_y b_z = 4x5 - 2x7 = 6
$$\cdot c_z = a_y b_y - a_y b_x = 2x6 - 3x5 = -3$$
Answer: a x b = (-3,6,-3)$$$$

When **a** and **b** start at the origin point (0,0,0), the Cross

Product will end at:

• $c_x = a_y b_z - a_z b_y$

• $c_y = a_z b_x - a_x b_z$

Answer: **a** \times **b** = (-3,6,-3)

cross product example

The intersection is $\, {f x} = l imes l'$ (vector cross product)

$$\mathbf{l} \cdot (\mathbf{l} \times \mathbf{l}') = \mathbf{l}' \cdot (\mathbf{l} \times \mathbf{l}') = 0$$

$$\mathbf{l}^T \mathbf{x} = \mathbf{l}^{\prime T} \mathbf{x} = 0$$

Points and Lines

Line joining points

$$\mathbf{l} = \mathbf{x} \times \mathbf{x}'$$

$$\mathbf{x} \cdot (\mathbf{x} \times \mathbf{x}') = \mathbf{x}' \cdot (\mathbf{x} \times \mathbf{x}') = 0$$
$$\mathbf{x}^T \mathbf{l} = \mathbf{x}'^T \mathbf{l} = 0$$

Epipolar Geometry

Epipolar Geometry

What is the mapping for a point in one image to its epipolar line?

Fundamental Matrix

- Recall camera projection
 - $P = K[R|\mathbf{t}]$
 - $\mathbf{x} = P \mathbf{X}$ Homogeneous coordinates
- Backprojection
 - $\mathbf{X}(\lambda) = \mathbf{P}^+ \mathbf{x} + \lambda \mathbf{C}$ P^+ is the pseudo-inverse of $P, PP^+ = I$

 $P^+\mathbf{x}$ and $C\,$ are two points on the ray

Fundamental Matrix

- Project to the other image $P^+ \mathbf{x}$ and C are two points on the ray
- $P'P^+\mathbf{x}$ and P'C
- Epipolar line $\mathbf{l}' = (P'C) \times (P'P^+\mathbf{x})$ Epipole $\mathbf{e}' = (P'C)$ $\mathbf{l}' = [\mathbf{e}']_{\times} (P'P^+\mathbf{x})$

Fundamental Matrix

• Epipolar line

$\mathbf{l}' = [\mathbf{e}']_{\times} (P'P^+\mathbf{x}) = F\mathbf{x}$

• Fundamental matrix $F = [\mathbf{e}']_{\times} P' P^+$ 3x3

Properties of Fundamental Matrix

 ${f x}'$ is on the epiploar line ${f l}'=F{f x}$ ${f x}'^TF{f x}=0$

- Transpose: if F is the fundamental matrix of (P, P'), then F^T is the fundamental matrix of (P', P)
- Epipolar line: $\mathbf{l}' = F\mathbf{x} \quad \mathbf{l} = F^T\mathbf{x}'$
- Epipole: $\mathbf{e'}^\mathsf{T} \mathbf{F} = \mathbf{0}$ $\mathbf{F} \mathbf{e} = \mathbf{0}$ $\mathbf{e'}^\mathsf{T}(\mathbf{F} \mathbf{x}) = (\mathbf{e'}^\mathsf{T} \mathbf{F}) \mathbf{x} = 0$ for all \mathbf{x}
- 7 degrees of freedom $\det \mathbf{F} = 0$

Why the Fundamental Matrix is Useful?

THE UNIVERSITY OF TEXAS AT DALLAS

Special Case: A Stereo System

Special Case: A Stereo System

$$x_l = f\frac{X}{Z} + p_x \qquad y_l = f\frac{Y}{Z} + p_y$$

• Right camera

$$x_r = f \frac{X - T_x}{Z} + p_x$$
$$y_r = f \frac{Y}{Z} + p_y$$

Stereo Disparity

Recall motion parallax: near objects move faster (large disparity)

Stereo Example

Disparity values (0-64)

Note how disparity is larger (brighter) for closer surfaces.

 $d = f \frac{T_x}{Z}$

Computing Disparity

Left Image

For a patch in left image Compare with patches along same row in right image

- Eipipolar lines are horizontal lines in stereo
- For general cases, we can find correspondences on eipipolar lines
- Depth from disparity

$$Z = f \frac{T_x}{d}$$

Triangulation

Compute the 3D point given image correspondences

Intersection of two backprojected lines

$$\mathbf{X} = \mathbf{l} \times \mathbf{l}'$$

Triangulation

- In practice, we find the correspondences ${\bf y} ~ {\bf y}'$
- The backprojected lines may not intersect
- Find X^{*} that minimizes

 $d(\mathbf{y}, P\mathbf{X}^*) + d(\mathbf{y}', P'\mathbf{X}^*)$ Projection matrix

Summary

Depth perception

- Monocular cues
- Stereo cues

Computational models for stereo vision

- Epipolar geometry
- Stereo Systems
- Triangulation

Further Reading

Multiview Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Chapter 9, Epipolar Geometry and Fundamental Matrix

Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 5 https://web.stanford.edu/class/cs231a/syllabus.html