Epipolar Geometry and Stereo

CS 4391 Introduction to Computer Vision
Professor Yapeng Tian
Department of Computer Science

Depth Perception

Metric

- The car is 10 meters away

Ordinary

- The tree is behind the car

Depth Cues

Information for sensory stimulation that is relevant to depth perception

Monocular cues: single eye

Stereo cues: both eyes

"Paris Street, Rainy Day," Gustave
Caillebotte, 1877. Art Institute of Chicago

- Texture of the bricks
- Perspective projection
- Etc.

Monocular Depth Cues

Retinal image size

Perspective projection

- Size of object on the retina is proportional to $1 / z$

Monocular Depth Cues

Height in visual field

- The closer to the horizon, the further the perceived distance

Monocular Depth Cues

Motion parallax

- Parallax: relative difference in speed

Further objects move slower

Monocular Depth Cues

Shadow

Occlusions

Image blur

Monocular Depth Estimation

https://heartbeat.fritz.ai/research-guide-for-depth-estimation-with-deep-learning-1a02a439b834

Stereo Depth Cues

Binocular disparity

- Each eye provides a different viewpoint, which results in different images on the retina

Epipolar Geometry

The geometry of stereo vision

- Given 2D images of two views
- What is the relationship between pixels of the images?
- Can we recover the 3D structure of the world from the 2D images?

Wikipedia

Geometry of Stereo Vision

Basics: points and lines
Homogeneous representation of lines
A line in a 2D plane $a x+b y+c=0 \quad(a, b, c)^{T}$
$k(a, b, c)^{T}$ represents the same line for nonzero k
A point lies on the line $\mathbf{x}^{T} \mathbf{l}=0 \quad \mathbf{x}=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right] \mathbf{l}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$

Points and Lines

Intersection of lines

$$
\mathbf{l}=(a, b, c)^{T} \quad \mathbf{l}^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)^{T}
$$

$$
\begin{aligned}
& \mathbf{l} \cdot\left(\mathbf{l} \times \mathbf{l}^{\prime}\right)=\mathbf{l}^{\prime} \cdot\left(\mathbf{l} \times \mathbf{l}^{\prime}\right)=0 \\
& \mathbf{l}^{T} \mathbf{x}=\mathbf{l}^{\prime T} \mathbf{x}=0
\end{aligned}
$$

Points and Lines

Line joining points

$$
\mathrm{l}=\mathrm{x} \times \mathrm{x}^{\prime}
$$

$$
\begin{aligned}
\mathbf{x} \cdot\left(\mathbf{x} \times \mathbf{x}^{\prime}\right) & =\mathbf{x}^{\prime} \cdot\left(\mathbf{x} \times \mathbf{x}^{\prime}\right)=0 \\
\mathbf{x}^{T} \mathbf{l} & =\mathbf{x}^{\prime T} \mathbf{l}=0
\end{aligned}
$$

Epipolar Geometry

Epipolar Geometry

$\sigma \mathrm{x}$?

Epipolar Geometry

Epipolar lines

Epipolar Geometry

What is the mapping for a point in one image to its epipolar line?

Fundamental Matrix

- Recall camera projection

$$
\begin{aligned}
& P=K[R \mid \mathbf{t}] \\
& \mathbf{x}=P \mathbf{X} \quad \text { Homogeneous coordinates }
\end{aligned}
$$

- Backprojection

$$
\begin{aligned}
& \mathbf{X}(\lambda)=\mathrm{P}^{+} \mathbf{x}+\lambda \mathbf{C} \\
& P^{+} \text {is the pseudo-inverse of } P, P P^{+}=I \\
& P^{+} \mathbf{X} \text { and } C \text { are two points on the ray }
\end{aligned}
$$

Fundamental Matrix

- Project to the other image

$P^{+} \mathbf{X}$ and C are two points on the ray

- Epipolar line
$\mathbf{l}^{\prime}=\left(P^{\prime} C\right) \times\left(P^{\prime} P^{+} \mathbf{x}\right)$
Epipole $\mathbf{e}^{\prime}=\left(P^{\prime} C\right)$
$\mathbf{l}^{\prime}=\left[\mathbf{e}^{\prime}\right]_{\times}\left(P^{\prime} P^{+} \mathbf{x}\right)$

Fundamental Matrix

- Epipolar line

Properties of Fundamental Matrix

\mathbf{x}^{\prime} is on the epiploar line $\mathbf{l}^{\prime}=F \mathbf{x}$

$$
\mathbf{x}^{\prime T} F \mathbf{x}=0
$$

- Transpose: if F is the fundamental matrix of (P , P^{\prime}), then F^{\top} is the fundamental matrix of ($\mathrm{P}^{\prime}, \mathrm{P}$)
- Epipolar line: $\mathbf{l}^{\prime}=F \mathbf{x} \quad \mathbf{l}=F^{T} \mathbf{x}^{\prime}$
- Epipole: $\quad \mathbf{e}^{\prime \top} \mathrm{F}=\mathbf{0} \quad \mathrm{Fe}=\mathbf{0}$

$$
\mathbf{e}^{\prime \top}(\mathrm{F} \mathbf{x})=\left(\mathbf{e}^{\prime \top} \mathrm{F}\right) \mathbf{x}=0 \text { for all } \mathbf{x}
$$

- 7 degrees of freedom $\operatorname{det} F=0$

Why the Fundamental Matrix is Useful?

Special Case: A Stereo System

Special Case: A Stereo System

- Left camera

Stereo Disparity

- Disparity

$$
\begin{aligned}
d & =x_{l}-x_{r} \\
& =\left(f \frac{X}{Z}+p_{x}\right)-\left(f \frac{X-T_{x}}{Z}+p_{x}\right) \\
& =f \frac{T_{x}}{Z}
\end{aligned}
$$

- Depth

$$
Z=f \frac{T_{x}}{d} \text { Daseline }
$$

Recall motion parallax: near objects move faster (large disparity)

Stereo Example

Disparity values (0-64)

$$
d=f \frac{T_{x}}{Z}
$$

Note how disparity is larger (brighter) for closer surfaces.

Computing Disparity

- Eipipolar lines are horizontal lines in stereo
- For general cases, we can find correspondences on eipipolar lines
- Depth from disparity

$$
Z=f \frac{T_{x}}{d}
$$

Triangulation

Compute the 3D point given image correspondences

Intersection of two backprojected lines

$$
\mathbf{X}=\mathbf{l} \times \mathbf{l}^{\prime}
$$

Triangulation

- In practice, we find the correspondences y y^{\prime}

- The backprojected lines may not intersect
- Find X^{*} that minimizes

Projection matrix

Summary

Depth perception

- Monocular cues
- Stereo cues

Computational models for stereo vision

- Epipolar geometry
- Stereo Systems
- Triangulation

Further Reading

Multiview Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Chapter 9, Epipolar Geometry and Fundamental Matrix

Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 5
https://web.stanford.edu/class/cs231a/syllabus.htm|

