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Camera Models: 3D-to-2D Projection
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Recap Camera Models

Camera projection matrix

P = K[R|t
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Camera intrinsics Camera extrinsics:
rotation and translation
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Recap 3D Translation
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Recap 3D Rotations o (|

Yaw
Unit-length columns

Perpendicular columns
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Camera Calibration

Estimate the camera intrinsics and camera extrinsics P — K[R‘t]

Why is this useful?

* If we know K and depth, we can compute 3D points in camera frame
* In stereo matching to compute depth, we need to know focal length

e Camera pose tracking is critical in SLAM (Simultaneous Localization and
Mapping)
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Camera Calibration

Estimate the camera intrinsics and camera extrinsics P — K[R‘t]

ldea: using images from the camera with a known world coordinate

frame b
W
(W) Calibration rig

A\ e

checkerboard
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Camera Calibration

A k
(W) = Calibration rig
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« Unknowns

Camera intrinsics [g

Camera extrinsics: R’ T

rotation and translation

e Knowns

World coordinates P, , . . ., P,

Pixel coordinates P1,...,Pn
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Camera Calibration

A\ O\

A\ e\

Calibration rig

image
N

[
l| Pi

/ \ T~

Pixel coordinate 3x4  World coordinate

 How many unknowns in M?
* 11
« How many correspondences do
we need to estimate M?
 We need 11 equations
* 6 correspondences
* More correspondences are better

ﬁl- THE UNIVERSITY OF TEXAS AT DALLAS




A Linear Approach to Camera Calibration

1005 1 x4
M= ms|1x4
m3| 1 x4

MP; =

. P
mo P;

100 §] Pq;

m3 P;
100 5] Pq;

ms P;
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A Linear Approach to Camera Calibration

U;
Given n correspondences Pi = Vs < P
ul(mgPl)—mlPl =0 PlT 0" _ulplT
’Ul(mgPl)—mgPl =0 1 1 1
- : ms | =Pm =0
2n equations 7
- P 0Y —w, P [
un(mSPn)_mlpn =0 0f Pg —Unpg
Vn(msP,)—mo P, =0 MM X 19 12 % 1

How to solve this linear system?
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How to extract K, R and
T from the solution?

Li n e a r SySte m FP, Computer Vision: A

Modern Approach, Sec. 1.3

Pm =20

2n x 12 12 x 1

* Find non-zero solutions
 |f mis a solution, kxm is also a solution for &£ € 'R
+ We can seek a solution ||m|| = 1

min |

Subject to |

Solution: P = UDVT SVD decomposition of P

Pm” 1N
ml| =1 20x12 12x12 12x12

A5.4 in Multiview Geometry in

m is the last column of V computer vision
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A Linear Approach to Camera Calibration

Ak
w

(W) Calibration rig
/: image
g Pm = 0
~ i
pad ': Pi
P |
s "
L~ g &
T 16 s =" :
— 7 Pg All 3D points should NOT be on
W .
. the same plane. Otherwise, no
Ly e 2 solution

FP, Computer Vision: A Modern Approach, Sec. 1.3
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Camera Calibration with a 2D Plane

A Flexible New Technique for Camera
Calibration. Zhengyou Zhang, TPAMI, 2000.

X
3D points on the I
checkerboard (Z = 0) LS }O/

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
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Camera Pose Estimation

Estimate the 3D rotation and 3D translation of a camera with respect to
some world coordinate frame

y T 3D Rotation R R y

<

World Coordinates

Xeam = RX + ¢

Two cases: with known or unknown camera intrinsics
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Camera Pose Estimation

Using visibility of features in the real world

* Natural Features
* No setup cost
« Adifficult problem

S %M% WOt Artificial features
\ /  Print a special tag

x Image Plane

Ay

Features in Image

<
—-
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QR Code for Pose Estimation

Using the 4 corners of a QR code as features

https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-pose-estimation-grcode.html
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The Perspective-n-Point (PnP) Problem

Given/known variables Features in Tmage
* A set of n 3D points in the world coordinates Pw Focal Point ) % in World

* Their projections (2D coordinates) on an image D¢
e Camera intrinsics [

Unknown variables
* 3D rotation of the camera with respective to the world coordinates
* 3D translation of the camera [’

Image Plane

- - - - |z
spe=K[R|T|py u fe v wo ||t ri2 T3 b ¥
'Nf sfo| =10 fy wvo||ra r2 13 t z

1] L0 0 1 Lrsi rsy 73z 13

Unknown 1
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The PnP Problem with QR Code

(Cﬂl,y1) y
(—1,1,0 >~ (1,1,0)

BRI

(22, Yy2)

World




The Perspective-n-Point (PnP) Problem

6 degrees of freedom (DOFs)
e 3 DOF rotation, 3 DOF translation

Each feature that is visible eliminates 2 DOFs

4 DOFs %Z/DOFS

P1P P2P
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The PnP Problem

Many different algorithms to solve the PnP problem

General idea c
* Retrieve the coordinates of the 3D points in the camera coordinate system pz

* Compute rotation and translation that align the world coordinates and the
camera coordinates

RT
PZ;U — Pq(::
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P3P

Camera center P Vi = K_ 1 u

vo = K 1v

vy = K 'w

Vo - V3 = ||[val|||vs]| cos o
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P3P X =|PAl Y =|PB| Z =|PC]|
Depths of the 3 pixels

P X, Y, /, are the unknowns
P
< %
X/O/M\ YQ—I—ZQ—YZ]?—CLIQZO
s | Z
ad b’ d Q\ law of cosines ¢ Z2 —I—AXv2 — XZq — b'2 — ()
X°4+Y?—-—XYr—c?=0.
\

/

p=2cosa a = |BC
g=2cosfB b =|AC
r=2cosy ¢ =|AB|
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P3P

* Find the solutions for X, Y, Z (depth
of the 3 pixels)

* Obtain the coordinates of A, B, C in
camera frame, e.g., dK ~1u for A

« Compute R and T using the
coordinates of A, B, C in camera
frame and in world frame
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Rotation and Translation from Two Point Sets

R,T
p;U ‘ pz

Closed-form solution

K.S. Arun, T.S. Huang, and S.D. Blostein. Least-Squares Fitting of Two 3-D Points Sets. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 9(5):698-700, 1987.

= ) llpf = R} + I
=1

Or
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https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf

EPNnP

EPnP: uses 4 control points € g=1,...,4

€1
4 A
: : w w / ,'1 \
3D coordinates in the world frame P; = Z Q5 Cy Known el
j=1
4
C
Weights Z a;; =1 Known 2
j=1
4
3D coordinates in the camera frame p; = Z @ C; Unknown
j=1

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV’09.
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EPNnP

Projection of the points in the camera frame

1
Vi, w; | = Kp; = KZOéz'jC;
=1

uz _fu O uC- 4 m;
Vi, wi (vl = [0 fove | > oy |y
1 0 0 1] 4=t 25
C C C 4 |
Unknown {(mjayjazj)}jzl’m,zl {witici Wi = 2 _.5=1 Qij2j

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV’09.
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4
- - _ - _ - Z Oéijfuﬂi;; + (uc — uz)z; =0
: =

U; fu O u.| 4 :1:3
Vi, w; [v;| = 0 fo ve Zazg yjc 4
i 1 i i 0 0 1 il J=1 _ZJC_ Z(Jéijfvyjc- + (’UC — ’Ui)Z; =0
=1

Unknown {($§7y§':7 Z;)}j—l,...,él
T
Mx = 0 x=[cf",c5 e ef"] 12x1

M i1s a 2n x 12 matrix

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV’09.
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EPNnP

T
cl cl cl C T:| See. Lepetit et al., 1JCV’09

Solve MIx = () toobtain X= [01 ;€ ,C3 ,Cy
Compute 3D coordinates in camera frame p; = Z%‘Q?
We know the 3D coordinates in world frame p? = Zasz}”

Compute R and T using the two sets of 3D coordinates

R,T
p;U ‘ pz

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV’09.
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P n P i n p ra Ct i Ce + SolvePnPMethod

enum cv::SolvePnPMethod

#include <opencv2/calib3d.hpp>

SolvePnPMethod
in OpenCV b s e

SOLVEPNP_EPNP

Python: cv.SOLVEPNP_EPNP

SOLVEPNP_P3P
Python: cv.SOLVEPNP_P3P

EPnP: Efficient Perspective-n-Point Camera Pose Estimation [125].

Complete Solution Classification for the Perspective-Three-Point Problem [80].

SOLVEPNP_DLS Broken implementation. Using this flag will fallback to EPnP.
Python: cv.SOLVEPNP_DLS A Direct Least-Squares (DLS) Method for PnP [101]

SOLVEPNP_UPNP Broken implementation. Using this flag will fallback to EPnP.

Python: cv.SOLVEPNP_UPNP Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation [169]

SOLVEPNP_AP3P
Python: cv.SOLVEPNP_AP3P

SOLVEPNP_IPPE Infinitesimal Plane-Based Pose Estimation [46]

An Efficient Algebraic Solution to the Perspective-Three-Point Problem [114].

Python: cv.SOLVEPNP_IPPE Object points must be coplanar.
SOLVEPNP_IPPE_SQUARE Infinitesimal Plane-Based Pose Estimation [46]

Python: cv.SOLVEPNP_IPPE_SQUARE | This is a special case suitable for marker pose estimation.
4 coplanar object points must be defined in the following order:

« point 0: [-squareLength / 2, squareLength / 2, 0]
point 1: [ squareLength / 2, squareLength / 2, 0]
point 2: [ squareLength / 2, -squareLength / 2, 0]
point 3: [-squareLength / 2, -squareLength / 2, 0]

SOLVEPNP_SQPNP

SQPNP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem [208].
Python: cv.SOLVEPNP_SQPNP
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QR Code Pose Tracking Example

https://levelup.gitconnected.com/qr-code-scanner-in-kotlin-e15dd9bfbb1f
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Further Reading

Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition,
Lecture 3

FP, Computer Vision: A Modern Approach, Sec. 1.3
A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI. 2000.

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., [JCV’09.

ﬁl- THE UNIVERSITY OF TEXAS AT DALLAS



https://web.stanford.edu/class/cs231a/syllabus.html

