# Camera Calibration and Pose Estimation 

CS 4391 Introduction to Computer Vision<br>Professor Yapeng Tian<br>Department of Computer Science

## Camera Models: 3D-to-2D Projection



## Recap Camera Models

Camera projection matrix


Camera intrinsics
Camera extrinsics:
rotation and translation

$$
K=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & c_{x} \\
0 & \frac{\beta}{\sin \theta} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

## Recap 3D Translation

$$
\begin{aligned}
& \left(x_{1}, y_{1}, z_{1}\right) \mapsto\left(x_{1}+x_{t}, y_{1}+y_{t}, z_{1}+z_{t}\right) \\
& \left(x_{2}, y_{2}, z_{2}\right) \\
& \left(x_{3}, y_{3}, z_{3}\right) \\
& \left(x_{1}, y_{1}, z_{1}\right) \\
& \left(x_{2}, y_{2}, z_{2}\right) \mapsto\left(x_{2}+x_{t}, y_{2}+y_{t}, z_{2}+z_{t}\right) \\
& \left(x_{3}, y_{3}, z_{3}\right) \mapsto\left(x_{3}+x_{t}, y_{3}+y_{t}, z_{3}+z_{t}\right) \\
& \mathbf{v}_{\mathbf{1}} \mapsto \mathbf{v}_{\mathbf{1}}+\mathbf{t} \\
& \mathbf{v}_{\mathbf{2}} \mapsto \mathbf{v}_{\mathbf{2}}+\mathbf{t} \\
& \mathbf{v}_{\mathbf{3}} \mapsto \mathbf{v}_{\mathbf{3}}+\mathbf{t} \\
& \text { 3D Translation } \mathbf{t}=\left(x_{t}, y_{t}, z_{t}\right)
\end{aligned}
$$

## Recap 3D Rotations

$$
\alpha \overbrace{\text { Yaw }}^{y}
$$

Unit-length columns
Perpendicular columns
$\operatorname{det} M=1$
3 DOFs

$$
\begin{aligned}
& \left.\begin{array}{l}
R_{z}(\gamma)=\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array} \begin{array}{l}
R_{y}(\alpha)=\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right] \\
\text { Yaw } \\
R_{x}(\beta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \beta & -\sin \beta \\
0 & \sin \beta & \cos \beta
\end{array}\right] \quad R(\alpha, \beta, \gamma)=R_{y}(\alpha) R_{x}(\beta) R_{z}(\gamma)
\end{array} \begin{array}{l}
\text { Pitch }
\end{array}\right]
\end{aligned}
$$

## Camera Calibration

Estimate the camera intrinsics and camera extrinsics $P=K[R \mid \mathbf{t}]$
Why is this useful?

- If we know $K$ and depth, we can compute 3D points in camera frame
- In stereo matching to compute depth, we need to know focal length
- Camera pose tracking is critical in SLAM (Simultaneous Localization and Mapping)


## Camera Calibration

Estimate the camera intrinsics and camera extrinsics $P=K[R \mid \mathbf{t}]$

Idea: using images from the camera with a known world coordinate frame


checkerboard

## Camera Calibration


$(1,0,4)$ inches

- Unknowns

Camera intrinsics $K$
$\underset{\text { rotation and translation }}{\text { Camera extrinsics: }} R, T$

- Knowns

World coordinates $P_{1}, \ldots, P_{n}$
Pixel coordinates $p_{1}, \ldots, p_{n}$

## Camera Calibration

$K=\left[\begin{array}{ccc}\alpha & -\alpha \cot \theta & c_{x} \\ 0 & \frac{\beta}{\sin \theta} & c_{y} \\ 0 & 0 & 1\end{array}\right]$


Pixel coordinate $3 \times 4$ World coordinate

- How many unknowns in M?
- 11
- How many correspondences do we need to estimate $M$ ?
- We need 11 equations
- 6 correspondences
- More correspondences are better


## A Linear Approach to Camera Calibration

$$
\begin{gathered}
p_{i}=M P_{i}=K[R \mid T] P_{i} \\
M=\left[\begin{array}{c}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right] \begin{array}{cc}
1 \times 4 \\
1 \times 4 \\
1 \times 4
\end{array} \quad M P_{i}=\left[\begin{array}{l}
\mathbf{m}_{1} P_{i} \\
\mathbf{m}_{2} P_{i} \\
\mathbf{m}_{3} P_{i}
\end{array}\right] \underset{\text { Pixel }}{p_{i}=\left[\begin{array}{c}
u_{i} \\
v_{i}
\end{array}\right]=\left[\begin{array}{l}
\frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{3} P_{i}} \\
\frac{\mathbf{m}_{2} P_{i}}{\mathbf{m}_{3} P_{i}}
\end{array}\right]} \\
\text { A pair of equations } \begin{array}{l}
u_{i}\left(m_{3} P_{i}\right)-m_{1} P_{i}=0 \\
v_{i}\left(m_{3} P_{i}\right)-m_{2} P_{i}=0
\end{array}
\end{gathered}
$$

## A Linear Approach to Camera Calibration

Given $n$ correspondences $\quad p_{i}=\left[\begin{array}{l}u_{i} \\ v_{i}\end{array}\right] \leftrightarrow P_{i}$

$$
\begin{aligned}
& u_{1}\left(m_{3} P_{1}\right)-m_{1} P_{1}=0 \\
& v_{1}\left(m_{3} P_{1}\right)-m_{2} P_{1}=0
\end{aligned}
$$

$2 n$ equations

$$
\begin{aligned}
& u_{n}\left(m_{3} P_{n}\right)-m_{1} P_{n}=0 \\
& v_{n}\left(m_{3} P_{n}\right)-m_{2} P_{n}=0
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
P_{1}^{T} & 0^{T} & -u_{1} P_{1}^{T} \\
0^{T} & P_{1}^{T} & -v_{1} P_{1}^{T} \\
& \vdots & \\
P_{n}^{T} & 0^{T} & -u_{n} P_{n}^{T} \\
0^{T} & P_{n}^{T} & -v_{n} P_{n}^{T}
\end{array}\right]} \\
& \quad\left[\begin{array}{l}
m_{1}^{T} \\
m_{2}^{T} \\
m_{3}^{T}
\end{array}\right]=\mathbf{P} m=0 \\
& \quad 2 n \times 12
\end{aligned} 12 \times 1 .
$$

How to solve this linear system?

How to extract K, R and T from the solution?
FP, Computer Vision: A Modern Approach, Sec. 1.3

## Linear System

## $\mathbf{P} m=0$

$$
2 n \times 12 \quad 12 \times 1
$$

- Find non-zero solutions
- If m is a solution, $\mathrm{k} \times \mathrm{m}$ is also a solution for $k \in \mathcal{R}$
- We can seek a solution $\|m\|=1$



## A Linear Approach to Camera Calibration



## $\mathbf{P} m=0$

All 3D points should NOT be on the same plane. Otherwise, no solution

FP, Computer Vision: A Modern Approach, Sec. 1.3

## Camera Calibration with a 2D Plane


http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

## Camera Pose Estimation

Estimate the 3D rotation and 3D translation of a camera with respect to some world coordinate frame


## Camera Pose Estimation

Using visibility of features in the real world


- Natural Features
- No setup cost
- A difficult problem
- Artificial features
- Print a special tag


QR code

## QR Code for Pose Estimation

Using the 4 corners of a QR code as features

https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-pose-estimation-qrcode.html

## The Perspective-n-Point (PnP) Problem

Given/known variables

- A set of n 3D points in the world coordinates $p_{w}$
- Their projections (2D coordinates) on an image $p_{c}$
- Camera intrinsics $K$


Unknown variables
-3D rotation of the camera with respective to the world coordinates $R$

- 3D translation of the camera $T$
$\underbrace{s p_{c}=K[R \mid T] p_{w}}_{\text {Unknown }} \quad s\left[\begin{array}{c}u \\ v \\ 1\end{array}\right]=\left[\begin{array}{ccc}f_{x} & \gamma & u_{0} \\ 0 & f_{y} & v_{0} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3}\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$


## The PnP Problem with QR Code



## The Perspective-n-Point (PnP) Problem

6 degrees of freedom (DOFs)

- 3 DOF rotation, 3 DOF translation

Each feature that is visible eliminates 2 DOFs


P1P


P2P

## The PnP Problem

Many different algorithms to solve the PnP problem

General idea

- Retrieve the coordinates of the 3D points in the camera coordinate system $\mathbf{P}_{i}^{c}$
- Compute rotation and translation that align the world coordinates and the camera coordinates



## P3P



$$
\begin{aligned}
\mathbf{v}_{1} & =K^{-1} \mathbf{u} \\
\mathbf{v}_{2} & =K^{-1} \mathbf{v} \\
\mathbf{v}_{3} & =K^{-1} \mathbf{w} \\
\mathbf{v}_{2} \cdot \mathbf{v}_{3} & =\left\|\mathbf{v}_{2}\right\|\left\|\mathbf{v}_{3}\right\| \cos \alpha
\end{aligned}
$$

P3P


$$
X=|P A| Y=|P B| Z=|P C|
$$

Depths of the 3 pixels
$X, Y, Z$ are the unknowns

$$
\text { law of cosines }\left\{\begin{array}{c}
Y^{2}+Z^{2}-Y Z p-a^{\prime 2}=0 \\
Z^{2}+X^{2}-X Z q-b^{\prime 2}=0 \\
X^{2}+Y^{2}-X Y r-c^{\prime 2}=0 .
\end{array} \begin{array}{l}
p=2 \cos \alpha \\
a^{\prime}=|B C| \\
q=2 \cos \beta
\end{array} \quad b^{\prime}=|A C|, ~ \begin{array}{ll} 
\\
r=2 \cos \gamma & c^{\prime}=|A B|
\end{array}\right.
$$

## P3P



- Find the solutions for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ (depth of the 3 pixels)
- Obtain the coordinates of $A, B, C$ in camera frame, e.g., $d K^{-1} u$ for $A$
- Compute R and T using the coordinates of $A, B, C$ in camera frame and in world frame


## Rotation and Translation from Two Point Sets

## $\mathbf{p}_{i}^{w} \xrightarrow{R, T} \mathbf{p}_{i}^{c}$

## Closed-form solution

K.S. Arun, T.S. Huang, and S.D. Blostein. Least-Squares Fitting of Two 3-D Points Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5):698-700, 1987.

$$
\Sigma^{2}=\sum_{i=1}^{N}\left\|p_{i}^{c}-\left(R p_{i}^{w}+T\right)\right\|^{2}
$$

## Or https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf

## EPnP

EPnP: uses 4 control points $\quad \mathbf{c}_{j}, \quad j=1, \ldots, 4$

3D coordinates in the world frame $\mathbf{p}_{i}^{w}=\sum_{j=1}^{4} \alpha_{i j} \mathbf{c}_{j}^{w}$
Known

Weights

$$
\sum_{j=1}^{4} \alpha_{i j}=1
$$

3D coordinates in the camera frame $\mathbf{p}_{i}^{c}=\sum_{j=1}^{4} \alpha_{i j} \mathbf{c}_{j}^{c} \quad$ Unknown


EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV'09.

## EPnP

Projection of the points in the camera frame

$$
\begin{aligned}
& \forall i, w_{i}\left[\begin{array}{c}
\mathbf{u}_{i} \\
1
\end{array}\right]=K \mathbf{p}_{i}^{c}=K \sum_{j=1}^{4} \alpha_{i j} \mathbf{c}_{j}^{c} \\
& \forall i, w_{i}\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f_{u} & 0 & u_{c} \\
0 & f_{v} & v_{c} \\
0 & 0 & 1
\end{array}\right] \sum_{j=1}^{4} \alpha_{i j}\left[\begin{array}{c}
x_{j}^{c} \\
y_{j}^{c} \\
z_{j}^{c}
\end{array}\right]
\end{aligned}
$$

$$
\text { Unknown }\left\{\left(x_{j}^{c}, y_{j}^{c}, z_{j}^{c}\right)\right\}_{j=1, \ldots, 4}\left\{w_{i}\right\}_{i=1 \ldots . n} \quad w_{i}=\sum_{j=1}^{4} \alpha_{i j} z_{j}^{c}
$$

## EPnP

$$
\begin{aligned}
\forall i, w_{i}\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] & =\left[\begin{array}{ccc}
f_{u} & 0 & u_{c} \\
0 & f_{v} & v_{c} \\
0 & 0 & 1
\end{array}\right] \sum_{j=1}^{4} \alpha_{i j}\left[\begin{array}{c}
x_{j}^{c} \\
y_{j}^{c} \\
z_{j}^{c}
\end{array}\right] \\
w_{i} & =\sum_{j=1}^{4} \alpha_{i j} z_{j}^{c}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{j=1}^{4} \alpha_{i j} f_{u} x_{j}^{c}+\alpha_{i j}\left(u_{c}-u_{i}\right) z_{j}^{c}=0 \\
& \sum_{j=1}^{4} \alpha_{i j} f_{v} y_{j}^{c}+\alpha_{i j}\left(v_{c}-v_{i}\right) z_{j}^{c}=0
\end{aligned}
$$

$$
\text { Unknown }\left\{\left(x_{j}^{c}, y_{j}^{c}, z_{j}^{c}\right)\right\}_{j=1, \ldots, 4}
$$

$$
\mathbf{x}=\left[\mathbf{c}_{1}^{c \top}, \mathbf{c}_{2}^{c^{\top}}, \mathbf{c}_{3}^{c^{\top}}, \mathbf{c}_{4}^{c^{\top}}\right]^{\top} 12 \times 1
$$

## $\mathbf{M}$ is a $2 n \times 12$ matrix

EPnP: An Accurate $\mathrm{O}(\mathrm{n})$ Solution to the PnP Problem. Lepetit et al., IJCV'09.

## EPnP

Solve $\mathbf{M} \mathbf{x}=\mathbf{0}$ to obtain $\mathbf{x}=\left[\mathbf{c}_{1}^{c \top}, \mathbf{c}_{2}^{c \top}, \mathbf{c}_{3}^{c \top}, \mathbf{c}_{4}^{c^{\top}}\right]^{\top}{ }_{\text {See. Lepetit et al., IJcv'09 }}$
Compute 3D coordinates in camera frame $\mathbf{p}_{i}^{c}=\sum_{j=1}^{4} \alpha_{i j} \mathbf{c}_{j}^{c}$
We know the 3D coordinates in world frame $\mathbf{p}_{i}^{w}=\sum_{j=1}^{4} \alpha_{i j} \mathbf{c}_{j}^{w}$
Compute R and T using the two sets of 3D coordinates

$$
\mathbf{p}_{i}^{w} \quad R, T \quad \mathbf{p}_{i}^{c}
$$

## PnP in practice

## SolvePnPMethod in OpenCV

## - SolvePnPMethod

enum cv::SolvePnPMethod

## \#include 〈opencv2/calib3d.hpp〉

| Enumerator |  |
| :---: | :---: |
| SOLVEPNP_ITERATIVE <br> Python: cv.SOLVEPNP_ITERATIVE |  |
| SOLVEPNP_EPNP Python: cv.SOLVEPNP_EPNP | EPnP: Efficient Perspective-n-Point Camera Pose Estimation [125]. |
| SOLVEPNP_P3P <br> Python: cv.SOLVEPNP_P3P | Complete Solution Classification for the Perspective-Three-Point Problem [80]. |
| SOLVEPNP_DLS <br> Python: cv.SOLVEPNP_DLS | Broken implementation. Using this flag will fallback to EPnP. <br> A Direct Least-Squares (DLS) Method for PnP [101] |
| SOLVEPNP_UPNP Python: cv.SOLVEPNP_UPNP | Broken implementation. Using this flag will fallback to EPnP. <br> Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation [169] |
| SOLVEPNP_AP3P Python: cv.SOLVEPNP_AP3P | An Efficient Algebraic Solution to the Perspective-Three-Point Problem [114]. |
| SOLVEPNP_IPPE Python: cv.SOLVEPNP_IPPE | Infinitesimal Plane-Based Pose Estimation [46] Object points must be coplanar. |
| SOLVEPNP_IPPE_SQUARE Python: cv.SOLVEPNP_IPPE_SQUARE | Infinitesimal Plane-Based Pose Estimation [46] <br> This is a special case suitable for marker pose estimation. <br> 4 coplanar object points must be defined in the following order: <br> - point 0 : $[$-squareLength / 2 , squareLength $/ 2,0]$ <br> - point 1: [ squareLength / 2 , squareLength / 2, 0] <br> - point 2: [ squareLength / 2, -squareLength / 2,0 ] <br> - point 3 : $[$-squareLength / 2, -squareLength / 2,0$]$ |
| SOLVEPNP_SQPNP <br> Python: cv.SOLVEPNP_SQPNP | SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem [208]. |

## QR Code Pose Tracking Example


https://levelup.gitconnected.com/qr-code-scanner-in-kotlin-e15dd9bfbb1f

## Further Reading

Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 3 https://web.stanford.edu/class/cs231a/syllabus.html

FP, Computer Vision: A Modern Approach, Sec. 1.3

A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI. 2000.

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV'09.

