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Optical Flow is the pattern of apparent motion of objects, surfaces, and edges in
a visual scene caused by the relative motion between an observer and a scene
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Lucas-Kanade Method for Optical Flow Estimation

* Brightness Constancy: the intensity or brightness of a pixel remains
constant while moving from one frame to another

e Small Motion: the motion between consecutive frames is small
e Spatial Coherence: neighboring pixels have similar motion
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Can we use deep nets to estimate optical flow?
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Estimating Optical Flow using Deep Networks

* Given two consecutive image frames: I; and [;,;, we aim to
estimate the motion field (u, v) between them for each pixel

convolutional \’\

network \ Regression Loss: L2, L1, ...
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FlowNet

FlowNetSimple
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Stack two images x-y flow fields
: L : : dr dy
The architecture is similar to FCN for semantic segmentation At (u, v)

FlowNet: Learning Optical Flow with Convolutional Networks. Fischer et al., ICCV, 2015
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FlowNet

FlowNetCorr

RS
S
X

-

.. . . . 1024 .
512 512 512 512 '
32 256
¥

%
473

Correlation layer

FlowNet: Learning Optical Flow with Convolutional Networks. Fischer et al., ICCV, 2015
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FlowNet

Correlation layer: multiplicative patch comparison between two feature

maps .
c(x1,%2) = Y (fi(x1+0),f2(x2 + 0))
oc|—k,k|x|[—k,k]

« Two patches centered at x1 and x2, with size K= 2k + 1 .
« Convolve data with another data

« Limit the patches for comparison with maximum displacement d
* Only compare patches in a neighborhood with size D = 2d + 1

 Output size (v x h x D?)

FlowNet: Learning Optical Flow with Convolutional Networks. Fischer et al., ICCV, 2015
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FlowNet

Refinement

*: upsampled

FlowNet: Learning Optical Flow with Convolutional Networks. Fischer et al., ICCV, 2015
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Training Data

Flying Chairs Dataset
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Deep Optical Flow Results

Ground truth EpicFlow FlowNetS FlowNetC
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Results on Sintel (standard benchmark)
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Revisiting the Small Motion Assumption

* |s this motion small enough?
* Probably not—it’s much larger than one pixel (2"9 order terms dominate)
* How to solve this problem?

I(x + Az, y+ Ay, t + At) = I(z,y,t) + ?A.’L‘ - %Ay - %At—l—higher-order terms
x

High-order terms will have large values for large motion
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Coarse-to-fine Optical Flow Estimation

Downsampling factor = 2

- u=1.25pixels -

u=2.5pixels

- R
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Coarse-to-fine Optical Flow Estimation

Image Image Upsampled flow
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Simplified illustration
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PWC-Net

Image Image

Feature Feature @~ ;------------------ » Upsampled flow
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Recurrent All-Pairs Field Transforms (RAFT), a new deep network architecture for optical flow
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Applications

* Video Stabilization

* Video Frame Interpolation
* Action Recognition

* Video Restoration

* Visual Tracking
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Video Stabilization — Remove Camera Shake

Crowd #17

5

| Input Video Our Result

https://cseweb.ucsd.edu/~ravir/jiyang_cvpr20.pdf




Video Frame Interpolation

(X+u,y+V)attimet e use flow to estimate where pixel will
/ be between two frames
* Synthesize intermediate frames to

(x, y) at time t-1 generate slow-motion videos

Credit: Shu Kong
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https://www.youtube.com/watch?v=MjViy6kyiqs

Action Recognition

Spatial stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 [[softmax

7X7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048

stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2

single frame | Pool 2x2||pool 2x2

Temporal stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7X7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

. norm. ||pool 2x2 pool 2x2

optical flow o)

Two-stream architecture for video classification
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Video Restoration

Optical flow can be used to address a series video restoration tasks,
such as denoising, deblocking, and super-resolution

Flow net to estimate motion field between

! neighboring frames
- » Stack warped frames as input for the

Output

frame image processing network to predict the
high-quality frame
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Improc net

Reference

Flow net

Input Motion Warped
frames fields input

|+ Flow Estimation —»{«— Transformation —>§<—Image Processing— |
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Video Restoration
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https://www.youtube.com/watch?v=msC5GK9aV9Q

ing

isual Track
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https://nanonets.com/blog/optical-flow/

Further Reading

FlowNet: Learning Optical Flow with Convolutional Networks, 2015

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, 2018

RAFT: Recurrent All-Pairs Field Transforms for Optical Flow, 2020
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https://arxiv.org/abs/1504.06852
https://arxiv.org/abs/1709.02371
https://arxiv.org/abs/2003.12039

