

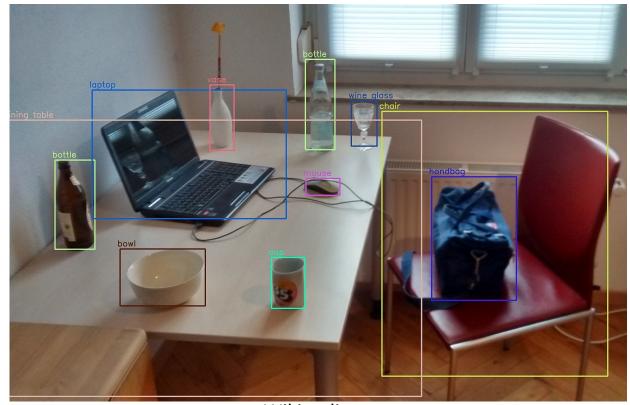
Object Detection

CS 4391 Introduction to Computer Vision
Professor Yapeng Tian
Department of Computer Science

Slides borrowed from Professor Yu Xiang

Object Detection

Localize objects in images and classify them



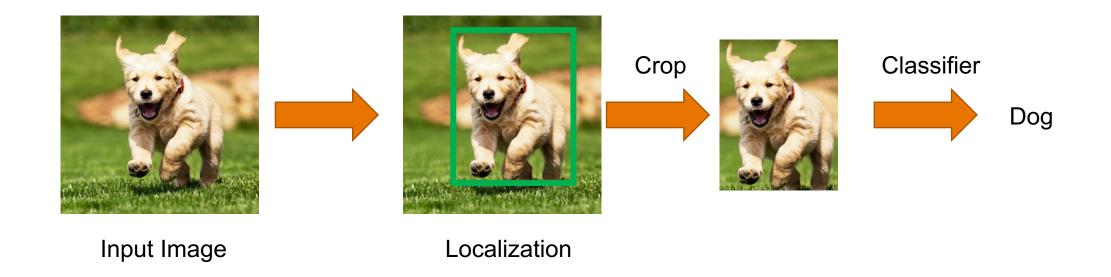
Wikipedia

Why using bounding boxes?

- Easy to store
 - (x, y, w, h): box center with width, height
 - (x1, y1, x2, y2): top left corner and bottom right corner
- Easy for image processing
 - Crop a region

Object Detection

Localization + Classification



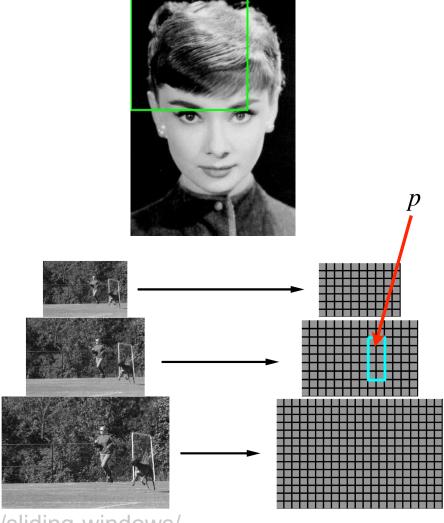
Localization: Sliding Window

Select a window with a fixed size

Scan the input image with the window (bounding box)

How to deal with different object scales and aspect ratios?

- Use boxes with different aspect ratios
- Image pyramid

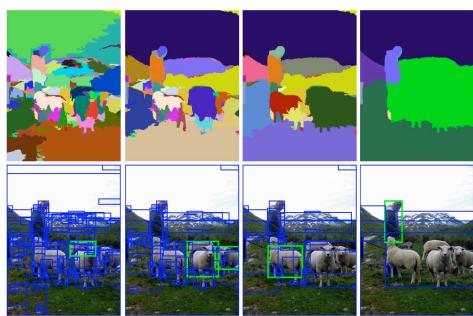


https://cvexplained.wordpress.com/tag/sliding-windows/

Localization: Region Proposal

Leverage methods that can generate regions with high likelihood of containing objects

• E.g., bottom-up segmentation methods, using edges

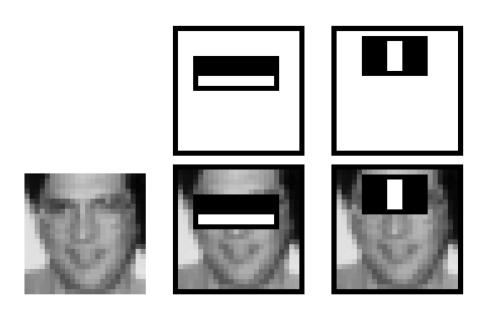


Selective Search, Sande et al., ICCV'11

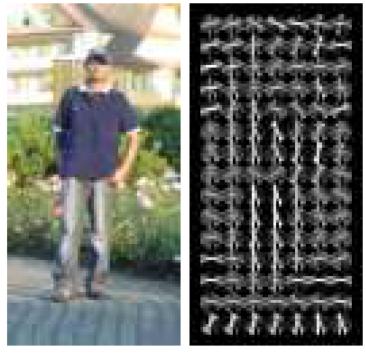
Classification: Features

Traditional methods: Hand-crafted features

Deep learning methods: learned features in the network



Viola and Jones: rectangle features



Dadal & Triggs: Histograms of Oriented Gradients

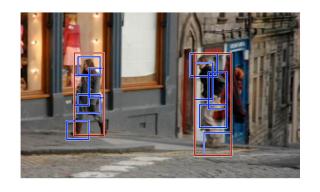
Classification: Classifiers

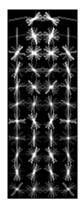
Traditional methods

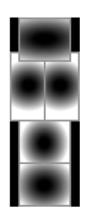
- AdaBoost
- Support vector machines (SVMs)

Viola and Jones: AdaBoost Robust Real-time Object Detection. IJCV, 2001.

- Deep learning methods
 - Neural networks







Felzenszwalb et al: SVM

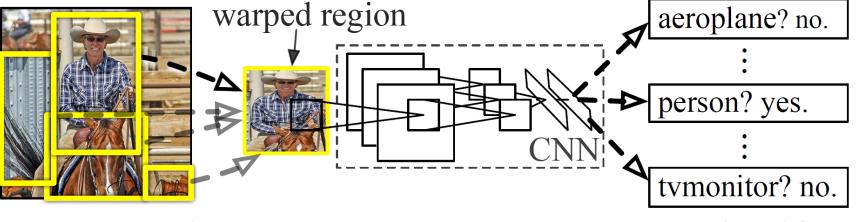
Object detection with discriminatively trained part-based models . TPAMI, 2009.

R-CNN

1. Input image

2. Extract region proposals (~2k)

Selective Search



3. Compute **CNN** features

4. Classify regions

SVM

Rich feature hierarchies for accurate object detection and semantic segmentation. Girshick et al., CVPR, 2014

R-CNN

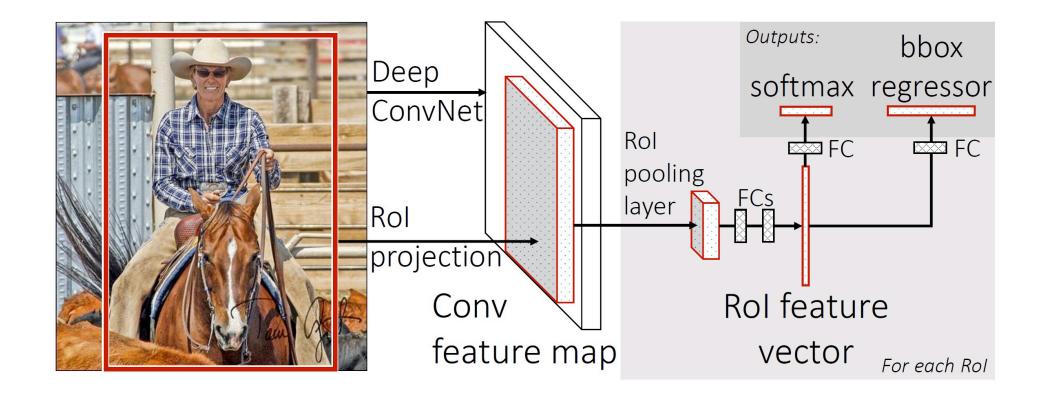
VOC 2007 test	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP
R-CNN pool ₅	51.8	60.2	36.4	27.8	23.2	52.8	60.6	49.2	18.3	47.8	44.3	40.8	56.6	58.7	42.4	23.4	46.1	36.7	51.3	55.7	44.2
R-CNN fc ₆	59.3	61.8	43.1	34.0	25.1	53.1	60.6	52.8	21.7	47.8	42.7	47.8	52.5	58.5	44.6	25.6	48.3	34.0	53.1	58.0	46.2
R-CNN fc ₇	57.6	57.9	38.5	31.8	23.7	51.2	58.9	51.4	20.0	50.5	40.9	46.0	51.6	55.9	43.3	23.3	48.1	35.3	51.0	57.4	44.7
R-CNN FT pool ₅	58.2	63.3	37.9	27.6	26.1	54.1	66.9	51.4	26.7	55.5	43.4	43.1	57.7	59.0	45.8	28.1	50.8	40.6	53.1	56.4	47.3
R-CNN FT fc ₆	63.5	66.0	47.9	37.7	29.9	62.5	70.2	60.2	32.0	57.9	47.0	53.5	60.1	64.2	52.2	31.3	55.0	50.0	57.7	63.0	53.1
R-CNN FT fc7	64.2	69.7	50.0	41.9	32.0	62.6	71.0	60.7	32.7	58.5	46.5	56.1	60.6	66.8	54.2	31.5	52.8	48.9	57.9	64.7	54.2
R-CNN FT fc ₇ BB	68.1	72.8	56.8	43.0	36.8	66.3	74.2	67.6	34.4	63.5	54.5	61.2	69.1	68.6	58.7	33.4	62.9	51.1	62.5	64.8	58.5
DPM v5 [20]	33.2	60.3	10.2	16.1	27.3	54.3	58.2	23.0	20.0	24.1	26.7	12.7	58.1	48.2	43.2	12.0	21.1	36.1	46.0	43.5	33.7
DPM ST [28]	23.8	58.2	10.5	8.5	27.1	50.4	52.0	7.3	19.2	22.8	18.1	8.0	55.9	44.8	32.4	13.3	15.9	22.8	46.2	44.9	29.1
DPM HSC [31]	32.2	58.3	11.5	16.3	30.6	49.9	54.8	23.5	21.5	27.7	34.0	13.7	58.1	51.6	39.9	12.4	23.5	34.4	47.4	45.2	34.3

BB: bounding box regression

Features from AlexNet

Rich feature hierarchies for accurate object detection and semantic segmentation. Girshick et al., CVPR, 2014

Fast R-CNN

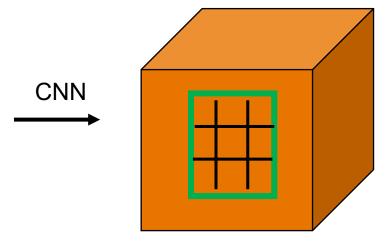


Fast R-CNN. Girshick, ICCV, 2015

Rol Pooling

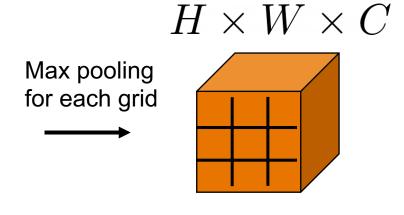
Divide the mapping Rol into H x W grids

$$\mathop{\mathsf{Rol}}\limits_{(x,y,h,w)}$$



Rol mapping to feature map

$$s \times (x, y, h, w)$$
$$s = \frac{1}{16}$$



Bounding Box Regression

Predict bounding box regression offset for K object classes

$$t^{k} = (t_{x}^{k}, t_{y}^{k}, t_{w}^{k}, t_{h}^{k})$$

$$t_{x} = (G_{x} - P_{x})/P_{w} \qquad \hat{G}_{x} = P_{w}d_{x}(P) + P_{x}$$

$$t_{y} = (G_{y} - P_{y})/P_{h} \qquad \hat{G}_{y} = P_{h}d_{y}(P) + P_{y}$$

$$t_{w} = \log(G_{w}/P_{w}) \qquad \hat{G}_{w} = P_{w} \exp(d_{w}(P))$$

$$t_{h} = \log(G_{h}/P_{h}). \qquad \hat{G}_{h} = P_{h} \exp(d_{h}(P)).$$

G: ground truth, P: input Rol

Fast R-CNN

Bounding box regress target

Loss function

$$L(p,u,t^u,v) = L_{\mathrm{cls}}(p,u) + \lambda[u \geq 1]L_{\mathrm{loc}}(t^u,v)$$
 ax classification probabilities Bounding box regress prediction

Softmax classification probabilities

$$p = (p_0, \dots, p_K)$$

True class label
$$t^u = (t^u_{\mathrm{x}}, t^u_{\mathrm{y}}, t^u_{\mathrm{w}}, t^u_{\mathrm{h}})$$

$$L_{\text{loc}}(t^u, v) = \sum_{i \in \{x, y, w, h\}} \text{smooth}_{L_1}(t^u_i - v_i) \qquad \text{smooth}_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1 \\ |x| - 0.5 & \text{otherwise} \end{cases}$$

Fast R-CNN

	Fa	st R-CN	N	F	SPPnet		
	S	\mathbf{M}	\mathbf{L}	S	\mathbf{M}	\mathbf{L}	$^{\dagger}\mathbf{L}$
train time (h)	1.2	2.0	9.5	22	28	84	25
train speedup	18.3×	14.0×	$8.8 \times$	$1 \times$	$1\times$	$1\times$	$3.4 \times$
test rate (s/im)	0.10	0.15	0.32	9.8	12.1	47.0	2.3
⊳ with SVD	0.06	0.08	0.22	-	-	-	-
test speedup	98×	$80 \times$	146×	1×	$1 \times$	$1 \times$	20×
⊳ with SVD	169×	150×	213 ×	-	-	-	-
VOC07 mAP	57.1	59.2	66.9	58.5	60.2	66.0	63.1
	56.5	58.7	66.6	_	-	-	-

S: AlexNet, M: VGG, L: deep VGG SVD for FCs layers

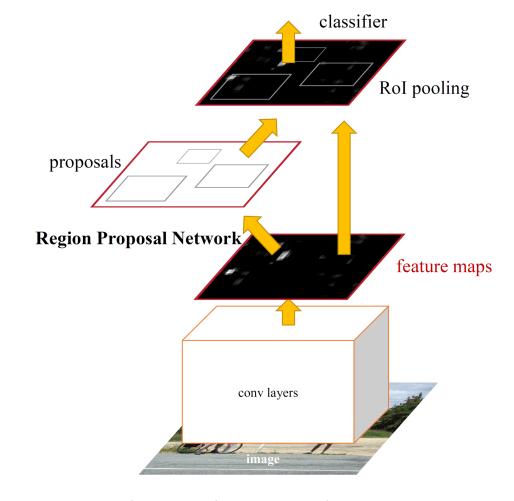
$$W \approx U \Sigma_t V^T$$

Fast R-CNN. Girshick, ICCV, 2015

Faster R-CNN

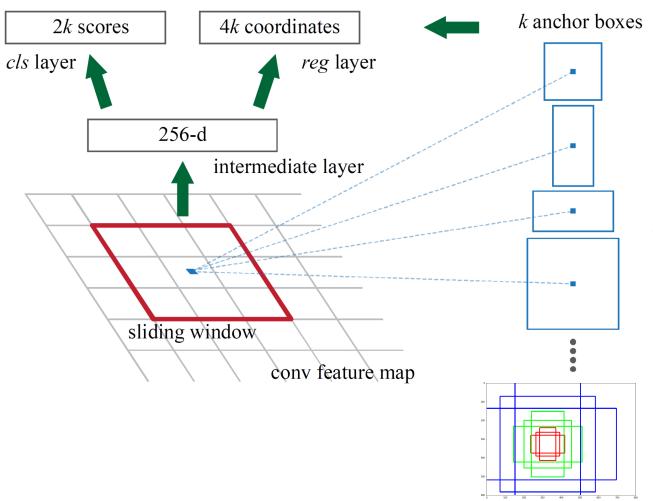
A single network for object detection

- Region proposal network
- Classification network



Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Ren et al., NeurIPS, 2015

Region Proposal Network



3x3 conv layer to 256-d

```
layer {
  name: "rpn_conv/3x3"
  type: "Convolution"
  bottom: "conv5"
  top: "rpn/output"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 256
    kernel_size: 3 pad: 1 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
}
```

classification

```
layer {
  name: "rpn_cls_score"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_cls_score"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 18 # 2(bg/fg) * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
}
```

Bounding box regression

```
layer {
  name: "rpn_bbox_pred"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_bbox_pred"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 36 # 4 * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
}
```

Two stage vs One stage

Two stage detection methods

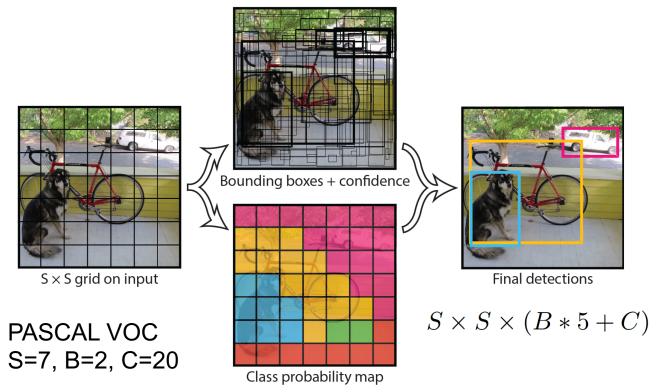
- Stage 1: generate region proposals
- Stage 2: classify region proposals and refine their locations
- E.g., R-CNN, Fast R-CNN, Faster R-CNN

One stage detection methods

- An end-to-end network for object detection
- E.g., YOLO

YOLO

Regress to bounding box locations and class probabilities



- Each grid handles objects with centers (x, y) in it
- Each grid predicts B bounding boxes
- Each bounding box predicts (x, y, w, h) and confidence (IoU of box and ground truth box)

$$Pr(Object) * IOU_{pred}^{truth}$$

Each grid also predicts C class probabilities

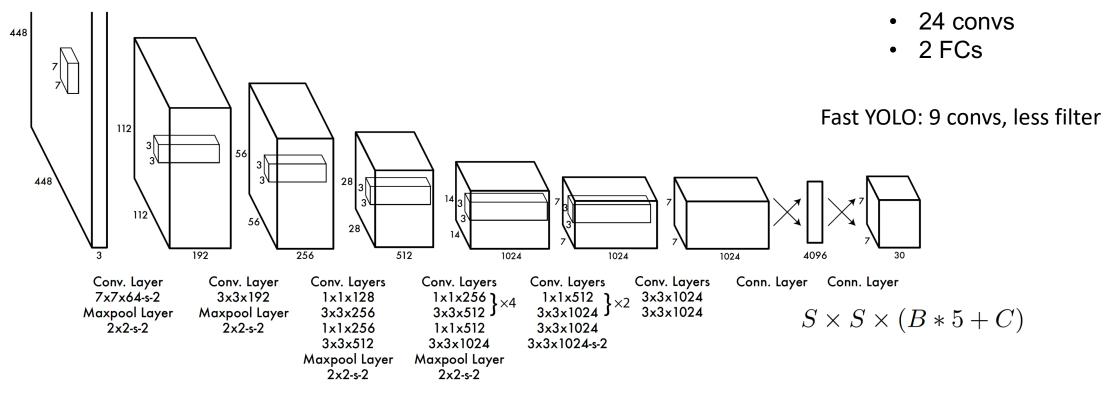
$$Pr(Class_i|Object)$$

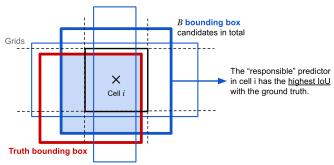
In testing

$$Pr(Class_i|Object) * Pr(Object) * IOU_{pred}^{truth} = Pr(Class_i) * IOU_{pred}^{truth}$$

YOLO

Regress to bounding box locations and class probabilities





Training loss function

$$\lambda_{ ext{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{ ext{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right]$$
 Localization loss

1 ij jth bounding box from cell i "responsible" for the prediction

 $+ \lambda_{ extbf{coord}} \sum_{ij}^{S^2} \sum_{ij}^{B} \mathbb{1}_{ij}^{ ext{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right]$

highest current IOU with the ground truth

$$+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2$$

Confidence loss

$$\mathbb{1}_i^{ ext{obj}}$$
 Object in cell i

$$+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2$$

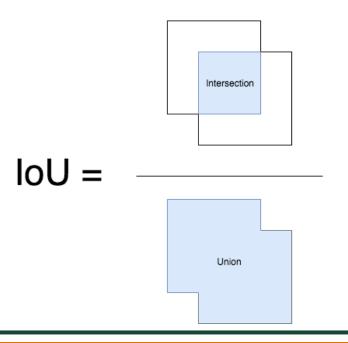
$$+\sum_{i=0}^{S^2} \mathbb{1}_i^{ ext{obj}} \sum_{c \in ext{classes}} \left(p_i(c) - \hat{p}_i(c)
ight)^2$$
 Classification

 $\lambda_{\text{coord}} = 5$ $\lambda_{\text{noobj}} = .5$

Classification loss

Non-maximum Suppression

Keep the box with the highest confidence/score Compute IoU between this box and other boxes Suppress boxes with IoU > threshold



Before non-max suppression

Non-Max Suppression

https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c

YOLO

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

YOLOv2 and YOLOv3

YOLOv2

- Batch normalization (normalization of the layers' inputs by re-centering and re-scaling)
- High resolution classifier 416x416
- Convolutional with anchor boxes (remove FC layers)
- Dimension clustering to decide the anchor boxes
- Multi-scale training (change input image size)

YOLOv3

- Binary cross-entropy loss for the class predictions
- Prediction across scales

YOLO9000: Better, Faster, Stronger. Redmon & Farhadi, CVPR, 2017

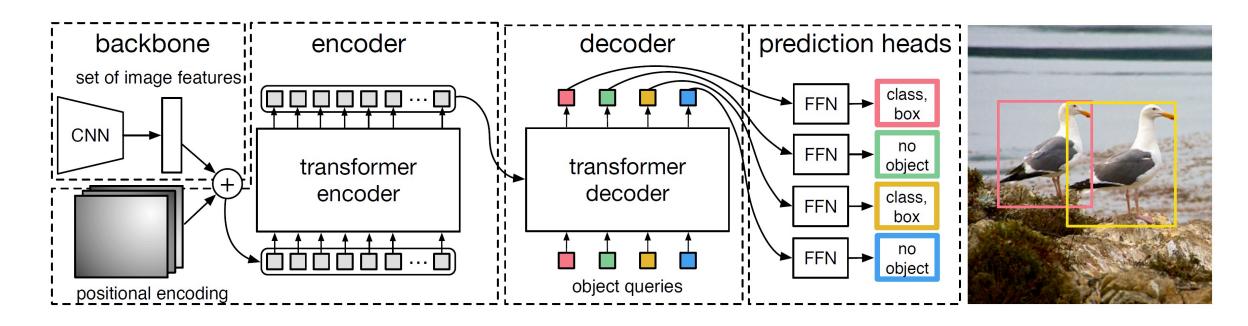
YOLOv3: An Incremental Improvement

	Туре	Filters	Size	Output
	Convolutional	32	3 × 3	256 × 256
	Convolutional	64	$3 \times 3 / 2$	128×128
	Convolutional	32	1 × 1	
1×	Convolutional	64	3×3	
	Residual			128 × 128
	Convolutional	128	$3 \times 3 / 2$	64×64
	Convolutional	64	1 × 1	
$2 \times$	Convolutional	128	3×3	
	Residual			64×64
	Convolutional	256	$3 \times 3 / 2$	32×32
	Convolutional	128	1 × 1	
8×	Convolutional	256	3×3	
	Residual			32×32
	Convolutional	512	$3 \times 3 / 2$	16 × 16
	Convolutional	256	1 × 1	
8×	Convolutional	512	3×3	
	Residual			16 × 16
	Convolutional	1024	$3 \times 3 / 2$	8 × 8
	Convolutional	512	1 × 1	
4×	Convolutional	1024	3×3	
	Residual			8 × 8
	Avgpool		Global	
	Connected		1000	
	Softmax			

Table 1. Darknet-53.

DTER

Vision transformer-based object detection



End-to-End Object Detection with Transformers. Carion et al., ECCV, 2020

Summary

Two-stage detectors

- R-CNN, Fast R-CNN, Faster R-CNN
- Region proposal + classification
- Good performance, slow

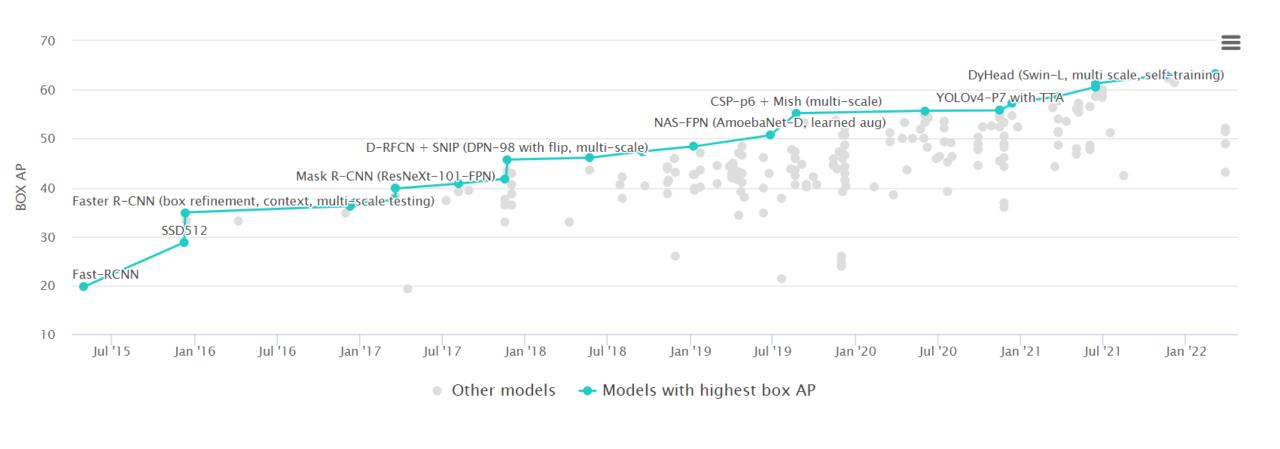
One-stage detectors

- YOLO, SSD
- End-to-end network to regress to bounding boxes
- Fast, comparable performance to two-stage detectors

Transformer-based detectors

- DTER
- Attention-based set prediction, using object queries

Object Detection on COCO test-dev



https://paperswithcode.com/sota/object-detection-on-coco

Further Reading

Viola–Jones object detection, 2001

https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf

Deformable part model, 2010,

https://ieeexplore.ieee.org/document/5255236

R-CNN, 2014 https://arxiv.org/abs/1311.2524

Fast R-CNN, 2015 https://arxiv.org/abs/1504.08083

Faster R-CNN, 2015 https://arxiv.org/abs/1506.01497

YOLO, 2015 https://arxiv.org/abs/1506.02640

YOLOv2, 2016 https://arxiv.org/abs/1612.08242

Feature Pyramid Networks, 2017 https://arxiv.org/pdf/1612.03144.pdf

DTER, 2020 https://arxiv.org/abs/2005.12872