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Learning Visual Representations
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Generative Models

Autoencoder

Variational Autoencoder (VAE)
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Discriminative Models (Supervised Learning)
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Supervised Representation Learning

Train neural networks for image classification
Use internal features in the network as feature representations
Applications
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Image retrieval

Deep Metric Learning via Lifted Structured Feature Embedding. Song et al., CVPR, 2016.



Supervised Representation Learning
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Image clustering
t-Distributed 
Stochastic Neighbor 
Embedding (t-SNE)

L.J.P. van der Maaten and 
G.E. Hinton. Visualizing 
High-Dimensional Data 
Using t-SNE. Journal of 
Machine Learning 
Research 9(Nov):2579-
2605, 2008.

Deep Metric Learning via Lifted Structured Feature Embedding. Song et al., CVPR, 2016.



Supervised Representation Learning

Training with classification loss functions
• E.g., cross-entropy loss

Can we have better loss functions for representation learning?

Deep metric learning
• Learning distance metrics with neural networks
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Distance metrics

L1 distance

L2 distance

Cosine distance

8

Cosine similarity



Deep Metric Learning
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Neural 
Network

Feature representation

L2 distance

Learning the distance metric is equivalent to learning the feature representation



Contrastive Loss

Use positive pairs and negative pairs
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Neural 
Network

Neural 
Network

Positive pair should be close

Negative pair should be far

small

large

Learning a Similarity Metric Discriminatively, with Application to Face Verification. Chopra et al., CVPR, 2005.



Contrastive Loss

Training data
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m: number of images in a batch margin

Learning a Similarity Metric Discriminatively, with Application to Face Verification. Chopra et al., CVPR, 2005.



Contrastive Loss

Compute Gradient
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Neural 
Network

Gradients



Triplet Loss

Use a triplet (anchor, positive, negative)
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FaceNet: A Unified Embedding for Face Recognition and Clustering. Schroff et al., CVPR, 2015.



Lifted Structured Loss

Consider all positive pairs and negative pairs in a mini-batch
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Distance for the positive pairDistance for the 
negative pair

Hard negative

Relaxed loss

Deep Metric Learning via Lifted Structured Feature Embedding. Song et al., CVPR, 2016.



Multi-class N-pair Loss

Use a positive pair and N-1 negative ones and
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Softmax for 
multi-class 
classification

Improved Deep Metric Learning with Multi-class N-pair Loss Objective. Kihyuk Sohn, NeurIPS, 2016



InfoNCE (Noise Contrastive Estimation) Loss

Similar to multi-class N-pair Loss
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Query q

Positive k+

Negatives ki

(K+1)-way softmax classification

Motivated from identifying targets from noisy data



Supervised Representation Learning

Use class labels to specify positive pairs and negative pairs

Loss functions
• Contrastive loss
• Triplet loss
• Lifted structured loss
• N-pair loss
• InfoNCE

Consider more relationships in a mini-batch is better
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Unsupervised/Self-supervised Representation 
Learning
Pretext tasks

• Tasks designed for feature learning
• Not the final tasks

Positive pairs from different views of the same image
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Learning Representations by 
Maximizing Mutual
Information Across Views. 
Bachman et al., NeurIPS, 2019 



Unsupervised/Self-supervised Representation 
Learning
Pretext task: context prediction
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Unsupervised Visual Representation Learning by Context Prediction. Doersch, et al., ICCV, 2015

Feature 
representation



Unsupervised/Self-supervised Representation 
Learning
Pretext task: rotation prediction
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Unsupervised Representation Learning by Predicting Image Rotations. Gidaris, et al., ICLR, 2018



Unsupervised/Self-supervised Representation 
Learning
Pretext task: colorization
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Colorful Image Colorization. Zhang, et al., ECCV, 2016



Unsupervised/Self-supervised Representation 
Learning
Pretext task: inpainting
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Context Encoders: Feature Learning by Inpainting. Pathak, et al., CVPR, 2016



Unsupervised/Self-supervised Representation 
Learning
Pretext task: clustering
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Deep Clustering for Unsupervised Learning of Visual Features. Caron et al., ECCV, 2018



SimCLR

A simple framework for contrastive learning of visual representations
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A Simple Framework for Contrastive Learning of Visual Representations. Chen et al., ICML, 2020

Loss function

encoder 
network

projection 
head

for a positive pair of examples (i, j)



SimCLR

Transformations
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A Simple Framework for Contrastive Learning of Visual Representations. Chen et al., ICML, 2020



SimCLR

After training, keep the encoder network

Linear evaluation protocol for classification
• A linear classifier is trained on top of the frozen base network
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A Simple Framework for Contrastive Learning of Visual Representations. Chen et al., ICML, 2020
Fully connected layer

Score

Base Network
(frozen)



SimCLR
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ImageNet top-1 accuracy
A Simple Framework for Contrastive Learning of Visual Representations. Chen et al., ICML, 2020

2x, 4x: more channels in ResNet



SimCLR
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https://github.com/google-research/simclr

https://github.com/google-research/simclr


Summary: Visual Representation Learning

Generative models
• Autoencoder
• VAE
• GAN

Discriminative models
• Supervised learning
• Training with image classification
• Deep metric learning

• Unsupervised/self-supervised learning
• Use pretext tasks
• Metric learning loss functions
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Further Reading
Learning a Similarity Metric Discriminatively, with Application to Face 
Verification, 2005 http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf
FaceNet: A Unified Embedding for Face Recognition and Clustering, 2015 
https://arxiv.org/abs/1503.03832
Deep Metric Learning via Lifted Structured Feature Embedding, 2016 
https://arxiv.org/abs/1511.06452
Improved Deep Metric Learning with Multi-class N-pair Loss Objective, 2016 
https://papers.nips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8c
a9-Paper.pdf
Learning Representations by Maximizing Mutual Information Across Views, 
2019 https://arxiv.org/pdf/1906.00910.pdf
A Simple Framework for Contrastive Learning of Visual Representations, 
2020 https://arxiv.org/abs/2002.05709
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