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Generative Models

Autoencoder N
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X Feature representation X
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Discriminative Models (Supervised Learning)

Classification

Output vector

\ Fully connected layer

Feature representation

Input image

-

Convolutional RelU Pooling
layer layer layer
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Supervised Representation Learning

Train neural networks for image classification
Use internal features in the network as feature representations

Retrieval

Applications QY

Image retrieval

Deep Metric Learnlng via Lifted Structured Feature Embedding. Song et al., CVPR, 2016.
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Supervised Representatlon Learmng

v swway

t-Distributed
Stochastic Neighbor
Embedding (t-SNE)

Image clustering

L.J.P. van der Maaten and
G.E. Hinton. Visualizing
High-Dimensional Data
Using t-SNE. Journal of
Machine Learning
Research 9(Nov):2579-
2605, 2008.

Deep Metric Learning via Lifted Structured Feature Embedding. Song et al., CVPR, 2016.
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Supervised Representation Learning

Training with classification loss functions
* E.g., cross-entropy loss

Can we have better loss functions for representation learning?

Deep metric learning
* Learning distance metrics with neural networks
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Distance metrics

N
L1 distance D(x,y) = Z T — i
1=1

| N
L2 distance D(X, y) - (5137, — yz)2
\&
Cosine distance
D(x,y) =1 =
x|y

Cosine similarity




Deep Metric Learning

x = Bl — f(x)

Feature representation

D(x1,%x2) = D(f(x1), f(x2))

L2 distance D(Xl,Xz) — Hf(xl) . f(X2)||2

Learning the distance metric is equivalent to learning the feature representation

ﬁl-D THE UNIVERSITY OF TEXAS AT DALLAS



Contrastive Loss

Use positive pairs and negative pairs

Positive pair f(Xl ) f(XQ) should be close

X1 = i = f(x1)

D(X1 | Xg) small

X ) Neural SN f(x2)

Network

Negative pair f (Xl ) f (Xz) should be far

D(Xl, X2) large

Vector Space Vector Space

Learning a Similarity Metric Discriminatively, with Application to Face Verification. Chopra et al., CVPR, 2005.
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Contrastive Loss

| 1 if positive pair
Y571 0 if negative pair

Training data {(Xi, X yzy)}

X1 X9 X3 X4 X5 X6

(a) Contrastive embedding

m/2

1 2

J = — Z yi,jDz'Q,j + (1 —wij) la— D ]
(4,7)

. [ZU]_|_ - maX(Ov 33)
m: number of images in a batch margin

Learning a Similarity Metric Discriminatively, with Application to Face Verification. Chopra et al., CVPR, 2005.
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Contrastive Loss

m/2
Compute Gradient Z Yi,j D — Yij) o — Dz‘,jﬁ_

(Z 7)
o0J 2

OD;;  f(xi)— f(xj)
Dij=1Ga) = F)llz 97 = 1Fx) — F(x)]]

Neural : f
XZ

Gradients <
0&)
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Triplet Loss

Use a triplet (anchor, positive, negative)

O O O O O O

X1 X2 X3 X4 X5 X6
(b) Triplet embedding
3 m/3
_ 2 2
J = 21 E : [Dz'a,ip - Dia,z’n T Oé] 4+

1

Dia,ip = |If(x7) = F&D)I Diaun = [[F(x]) — Fx3)]

FaceNet: A Unified Embedding for Face Recognition and Clustering. Schroff et al., CVPR, 2015.
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Lifted Structured Loss

Consider aII positive pairs and negative pairs in a mini-batch

Z max (0, Ji ;)°

(Z,J)GP

Jij=max | max o — D;r, max a— Dj;; | + D;;
(i,k)EN (j,)EN X1 Xo X3 X4 X5  Xg
‘ (c) Lifted structured embedding
Hard negative Dist or th " _
. istance for the positive pair
Distance for the P P
negative pair

Relaxed loss Jij =log [ > exp{fa—Dix}+ » exp{la—Dji} | +Di;

(i,k)eN (j,1)EN
Deep Metric Learning via Lifted Structured Feature Embedding. Song et al., CVPR, 2016.
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Multi-class N-pair Loss

Use a positive pair and N-1 negative ones and {x,x",x,...,xy 4}
N-—-1
Lxepaie (6, %%, {x; 1Y) =log (L+ ) exp(F(x) " f(x;) — f(x) " f(x1)))
= Softmax f
e xp(f(x) f(x*)) mult-class.

exp(f(x) " f(x1)) + Z " lexp(f(x)Tf(x;)) Cclassification

OOfOO

. \

OO0 - X --000)
Improved Deep Metric Learnlng with Multl class N-pair Loss Obijective. Kihyuk Sohn, NeurlPS, 2016
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INfoNCE (Noise Contrastive Estimation) Loss

Similar to multi-class N-pair Loss

L, = —log
D im0 exp(qki/T)
Query q
Positive k+ (K+1)-way softmax classification
Negatives ki Motivated from identifying targets from noisy data
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Supervised Representation Learning

Use class labels to specify positive pairs and negative pairs

Loss functions
* Contrastive loss
* Triplet loss
e Lifted structured loss
* N-pair loss
* InfoNCE

Consider more relationships in a mini-batch is better
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Unsupervised/Self-supervised Representation
Learning

Pretext tasks
* Tasks designed for feature learning
* Not the final tasks

Positive pairs from different views of the same image

Learning Representations by
Maximizing Mutual
Information Across Views.
Bachman et al., NeurlPS, 2019

Original
image

Randomly sampled view Randomly sampled view
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Unsupervised/Self-supervised Representation
Learning

" arnrn
% LT LR T
» k: dicti fc9 (8) T m
retext task: context pre Iction - H i
c8 (4096) S
P SR -
fc7 (4096)
P S i
f6 (4096)  F--------1 To6 (4096) Feature
000l5 (3x3,256,2) ool (3x3.256.2) | representation
conv5 (3x3,256,1) p--------1 conv5 (3x3,256,1)
conv4 (3x3,384,1) p=======~="- conv4 (3x3,384,1)
conv3(3x3,384,1) p=======-1 conv3 (3x3,384,1)
LRN2 LRN2
pool2 (3x3,384,2) pool2 (3x3,384,2)
conv2 (5x5,384,2) p--------1 conv2 (5x5,384,2)
LRN1 LRN1
pooll (3x3,96,2) pooll (3x3,96,2)
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ol ol

/ Patch 1 / / Patch 2 7

Unsupervised Visual Representation Learning by Context Prediction. Doersch, et al., ICCV, 2015
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Unsupervised/Self-supervised Representation
Learning

Pretext task: rotation prediction

~ Objectives:
9 ConvNet p Maximize prob.
— g(X,y=0) —» model F(.) F(X")
Rotate 0 degrees ‘ Predict 0 degrees rotation (y=0)

Rotated image: X°

ConvNet ‘ Maximize prob.
—» g(X,y=1) —p —p
g(X,y= % model F(.) ‘ > )
Rotate 90 degrees
Rotated image: X'

Predict 90 degrees rotation (y=1)

ConvNet Maximize prob.

|
|

e gxy=2) ol O el ) | F(X?)
|

)
Image X Rotate 180 degrees Predict 180 degrees rotation (y=2)

Rotated image: X~

%_» ConvNet Maximize prob.
— g(X,y=3) — I model F(.) > FX)

Rotate 270 degrees \ . . _
Rotated image: X Predict 270 degrees rotation (y=3)

Unsupervised Representation Learning by Predicting Image Rotations. Gidaris, et al., ICLR, 2018
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Unsupervised/Self-supervised Representation
Learning

Pretext task: colorization

Lightness L Color ab Lab Image

convl conv2 conv3 conv4 convh convb conv? conv8
atrous / dilated & trous / dilated

i/- 256 512 512 L% P 512 i
| fi f 0 f I
; 64 32 32 32 32 32 64
128
(a,b) probability i
distribution
312 ©o4 9

Colorful Image Colorization. Zhang, et al., ECCV, 2016
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Unsupervised/Self-supervised Representation
Learning

Pretext task: inpainting

i g :
g, 3 2
b 2 | Channel-wise |3
Encoder) | - Fully . E

. & | Connected |35 4

3 3 :

= 8 |

W a |

— S :

i

1

i

|

(c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)

Context Encoders: Feature Learning by Inpainting. Pathak, et al., CVPR, 2016
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Unsupervised/Self-supervised Representation

Learning

Pretext task: clustering

Convnet

y

Classification

T Pseudo-labels

Clustering

-~
-

Deep Clustering for Unsupervised Learning of Visual Features. Caron et al., ECCV, 2018
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SImCLR

A simple framework for contrastive learning of visual representations

Maximize agreement

Zi = > Zj
projection , \ | 4
g9(+) g9()
head Loss function
h; <— Representation — h;
A A
encoder 0. — 1 exp(sim(z;, 25)/7)
coder . O = log gy |
networ pe1 L[ktd] exp(sim(z;, zx)/T)

for a positive pair of examples (i, j)

A Simple Framework for Contrastive Learning of Visual Representations. Chen et al., ICML, 2020
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SImCLR

Transformations

(e) Color distort. (jitter)

(f) Rotate {90°,180°, 270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering
A Simple Framework for Contrastive Learning of Visual Representations. Chen et al., ICML, 2020
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SImCLR

After training, keep the encoder network ~ fi = f(#;) = ResNet(z;)

Linear evaluation protocol for classification
* A linear classifier is trained on top of the frozen base network

X
X Base Network f( )
(frozen)

Score

Fully connected layer
A Simple Framework for Contrastive Learning of Visual Representations. Chen et al., ICML, 2020
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SImCLR

*Supervised e *SimCLR (4x)
o 50 <P ~_*SimCLR (2x)
Cutout (>_>‘ __________ eCPCv2-L
c e 70 i
S Color = *SimCLR ocMe  gMOC0 (4x)
c %) ePIRL-c2x
S < AMDIM
§ sobel ~ 65 RPIRL eMoCo (2x)
© o QCPCVZ -ens.
= Noise ° PIRL
2 — O
g 5 50 MoCo eBigBiGAN
Blur % LA
&
Rotate
E eRotation
= 55 :
R co“’& O P ¢ oY oo we(@ge e|nstDisc
2nd transformation 25 50 100 200 400 626

Number of Parameters (Millions)

ImageNet top-1 accurac
9 P y 2X, 4x: more channels in ResNet

A Simple Framework for Contrastive Learning of Visual Representations. Chen et al., ICML, 2020
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SImCLR

ﬁl—D THE UNIVERSITY OF TEXAS AT DALLAS



https://github.com/google-research/simclr

Summary: Visual Representation Learning

Generative models

* Autoencoder
e VAE
 GAN

Discriminative models

* Supervised learning
* Training with image classification
* Deep metric learning
* Unsupervised/self-supervised learning
* Use pretext tasks
e Metric learning loss functions
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Further Reading

Learning a Similarity Metric Discriminatively, with Application to Face
Verification, 2005

FaceNet: A Unified Embedding for Face Recognition and Clustering, 2015
Deep Metric Learning via Lifted Structured Feature Embedding, 2016

Improved Deep Metric Learning with Multi-class N-pair Loss Objective, 2016

Learning Representations by Maximizing Mutual Information Across Views,
2019

éoszi{)nple Framework for Contrastive Learning of Visual Representations,
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http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1511.06452
https://papers.nips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://papers.nips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://arxiv.org/pdf/1906.00910.pdf
https://arxiv.org/abs/2002.05709

