

Visual Representation Learning

CS 4391 Introduction to Computer Vision Professor Yapeng Tian Department of Computer Science

Slides borrowed from Professor Yu Xiang

Learning Visual Representations

Autoencoder

Discriminative Models (Supervised Learning)

Train neural networks for image classification

Use internal features in the network as feature representations

Applications

Deep Metric Learning via Lifted Structured Feature Embedding. Song et al., CVPR, 2016.

t-Distributed Stochastic Neighbor Embedding (t-SNE)

L.J.P. van der Maaten and G.E. Hinton. **Visualizing High-Dimensional Data Using t-SNE**. *Journal of Machine Learning Research* 9(Nov):2579-2605, 2008.

Deep Metric Learning via Lifted Structured Feature Embedding. Song et al., CVPR, 2016.

Training with classification loss functions

• E.g., cross-entropy loss

Can we have better loss functions for representation learning?

Deep metric learning

• Learning distance metrics with neural networks

Distance metrics

L1 distance
$$D(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{N} |x_i - y_i|$$

L2 distance $D(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$

Cosine distance

$$D(\mathbf{x}, \mathbf{y}) = 1 - \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

Deep Metric Learning

$$\mathbf{X} \longrightarrow f(\mathbf{X})$$
Network

Feature representation

$$D(\mathbf{x}_1, \mathbf{x}_2) = D(f(\mathbf{x}_1), f(\mathbf{x}_2))$$

L2 distance
$$D(\mathbf{x}_1, \mathbf{x}_2) = \|f(\mathbf{x}_1) - f(\mathbf{x}_2)\|_2$$

Learning the distance metric is equivalent to learning the feature representation

Contrastive Loss

Use positive pairs and negative pairs

Learning a Similarity Metric Discriminatively, with Application to Face Verification. Chopra et al., CVPR, 2005.

\ \

Contrastive Loss

Training data $\{(\mathbf{x}_i, \mathbf{x}_j, y_{ij})\}$ $y_{ij} = \begin{cases} 1 & \text{if positive pair} \\ 0 & \text{if negative pair} \end{cases}$ \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_4 \mathbf{X}_5 \mathbf{X}_1 \mathbf{X}_{6} $J = \frac{1}{m} \sum_{(i,j)}^{m/2} y_{i,j} D_{i,j}^2 + (1 - y_{i,j}) \left[\alpha - D_{i,j} \right]_+^2$ $[x]_+ = \max(0, x)$ (a) Contrastive embedding m: number of images in a batch

Learning a Similarity Metric Discriminatively, with Application to Face Verification. Chopra et al., CVPR, 2005.

Contrastive Loss

Compute Gradient

$$J = \frac{1}{m} \sum_{(i,j)}^{m/2} y_{i,j} D_{i,j}^2 + (1 - y_{i,j}) \left[\alpha - D_{i,j} \right]_+^2$$

$$\frac{\partial J}{\partial D_{i,j}} = \frac{2}{m} \left(y_{i,j} D_{i,j} - (1 - y_{i,j}) [\alpha - D_{i,j}]_+ \right)$$

$$D_{i,j} = \|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|_2$$

$$\frac{\partial D_{i,j}}{\partial f(\mathbf{x}_i)} = \frac{f(\mathbf{x}_i) - f(\mathbf{x}_j)}{\|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|}$$

Triplet Loss

Use a triplet (anchor, positive, negative)

$$D_{ia,ip} = ||f(\mathbf{x}_i^a) - f(\mathbf{x}_i^p)|| \qquad D_{ia,in} = ||f(\mathbf{x}_i^a) - f(\mathbf{x}_i^n)||$$

FaceNet: A Unified Embedding for Face Recognition and Clustering. Schroff et al., CVPR, 2015.

Lifted Structured Loss

Consider all positive pairs and negative pairs in a mini-batch

$$J = \frac{1}{2|\widehat{\mathcal{P}}|} \sum_{(i,j)\in\widehat{\mathcal{P}}} \max(0, J_{i,j})^{2}$$

$$J_{i,j} = \max\left(\max_{(i,k)\in\widehat{\mathcal{N}}} \alpha - D_{i,k}, \max_{(j,l)\in\widehat{\mathcal{N}}} \alpha - D_{j,l}\right) + D_{i,j}$$

$$\max\left(\max_{(i,k)\in\widehat{\mathcal{N}}} \alpha - D_{i,k}, \max_{(j,l)\in\widehat{\mathcal{N}}} \alpha - D_{j,l}\right) + D_{i,j}$$

$$\sum_{(c) \text{ Lifted structured embedding}} D_{\text{istance for the positive pair}}$$

$$\max\left(\sum_{(i,k)\in\mathcal{N}} \exp\{\alpha - D_{i,k}\} + \sum_{(j,l)\in\mathcal{N}} \exp\{\alpha - D_{j,l}\}\right) + D_{i,j}$$

$$\sum_{(i,k)\in\mathcal{N}} \exp\{\alpha - D_{i,k}\} + \sum_{(j,l)\in\mathcal{N}} \exp\{\alpha - D_{j,l}\}\right) + D_{i,j}$$

Multi-class N-pair Loss

 $\{\mathbf{x}, \mathbf{x}^+, \mathbf{x}_1^-, \dots, \mathbf{x}_{N-1}^-\}$ Use a positive pair and N-1 negative ones and $\mathcal{L}_{ ext{N-pair}}(\mathbf{x},\mathbf{x}^+,\{\mathbf{x}^-_i\}_{i=1}^{N-1}) = \log\left(1+\sum_{i=1}^N\exp(f(\mathbf{x})^ op f(\mathbf{x}^-_i)-f(\mathbf{x})^ op f(\mathbf{x}^+))
ight)$ Softmax for $= -\log rac{\exp(f(\mathbf{x})^{ op}f(\mathbf{x}^+))}{\exp(f(\mathbf{x})^{ op}f(\mathbf{x}^+)) + \sum_{i=1}^{N-1}\exp(f(\mathbf{x})^{ op}f(\mathbf{x}_i^-))}$ multi-class classification **f**⁺_{N-2} **f**₁⁺ (**f**⁺_{N-1}) 100…f…00 **f**₄⁺ \mathbf{f}_2^+ DNN **f**⁺₄ \mathbf{f}_2^+ f⁻ ○○○ ·· X ·· ○○○

Improved Deep Metric Learning with Multi-class N-pair Loss Objective. Kihyuk Sohn, NeurIPS, 2016

InfoNCE (Noise Contrastive Estimation) Loss

Similar to multi-class N-pair Loss

$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=0}^{K} \exp(q \cdot k_i / \tau)}$$

Query q

(K+1)-way softmax classification

Negatives ki

Positive k+

Motivated from identifying targets from noisy data

Use class labels to specify positive pairs and negative pairs

Loss functions

- Contrastive loss
- Triplet loss
- Lifted structured loss
- N-pair loss
- InfoNCE

Consider more relationships in a mini-batch is better

Pretext tasks

- Tasks designed for feature learning
- Not the final tasks

Positive pairs from different views of the same image

Learning Representations by Maximizing Mutual Information Across Views. Bachman et al., NeurIPS, 2019

Pretext task: context prediction

Unsupervised Visual Representation Learning by Context Prediction. Doersch, et al., ICCV, 2015

Pretext task: rotation prediction

Unsupervised Representation Learning by Predicting Image Rotations. Gidaris, et al., ICLR, 2018

Pretext task: colorization

Colorful Image Colorization. Zhang, et al., ECCV, 2016

Pretext task: inpainting

(a) Input context

(b) Human artist

(c) Context Encoder (L2 loss)

Context Encoders: Feature Learning by Inpainting. Pathak, et al., CVPR, 2016

Pretext task: clustering

Deep Clustering for Unsupervised Learning of Visual Features. Caron et al., ECCV, 2018

A simple framework for contrastive learning of visual representations

Transformations

(f) Rotate {90°, 180°, 270°}(g) Cutout(h) Gaussian noise(i) Gaussian blur(j) Sobel filteringA Simple Framework for Contrastive Learning of Visual Representations. Chen et al., ICML, 2020

After training, keep the encoder network $h_i = f(\tilde{x}_i) = \text{ResNet}(\tilde{x}_i)$

Linear evaluation protocol for classification

• A linear classifier is trained on top of the frozen base network

A Simple Framework for Contrastive Learning of Visual Representations. Chen et al., ICML, 2020

A Simple Framework for Contrastive Learning of Visual Representations. Chen et al., ICML, 2020

https://github.com/google-research/simclr

Summary: Visual Representation Learning

Generative models

- Autoencoder
- VAE
- GAN

Discriminative models

- Supervised learning
 - Training with image classification
 - Deep metric learning
- Unsupervised/self-supervised learning
 - Use pretext tasks
 - Metric learning loss functions

Further Reading

Learning a Similarity Metric Discriminatively, with Application to Face Verification, 2005 http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf

FaceNet: A Unified Embedding for Face Recognition and Clustering, 2015 https://arxiv.org/abs/1503.03832

Deep Metric Learning via Lifted Structured Feature Embedding, 2016 https://arxiv.org/abs/1511.06452

Improved Deep Metric Learning with Multi-class N-pair Loss Objective, 2016 https://papers.nips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8c a9-Paper.pdf

Learning Representations by Maximizing Mutual Information Across Views, 2019 https://arxiv.org/pdf/1906.00910.pdf

A Simple Framework for Contrastive Learning of Visual Representations, 2020 https://arxiv.org/abs/2002.05709