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Single Images

Convolutional neural networks

High-level information

* Depth
=~ Y m—) m====) . Object classes

« Object poses
* Etc.
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Sequential Data

Data depends on time
*Video

t-1 t+1

* Sentence

UT Dallas is a rising public research university in the heart of DFW.
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Sequential Data Labeling

Video frame labeling

Standing Falling Falling Backflipping Backflipping Falling Sitting

18 T S 6}

IMAGE IMAGE IMAGE IMAGE IMAGE IMAGE IMAGE
CLASSIFIER CLASSIFIER CLASSIFIER CLASSIFIER CLASSIFIER CLASSIFIER CLASSIFIER

F[r@m@é of a Vide®
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https://bleedai.com/human-activity-recognition-using-tensorflow-cnn-lstm/

Sequential Data Labeling

Part-of-speech tagging (grammatical tagging)

S & 000

She sells seashells

on

the

seashore

A 4

Tag
AD3J
ADP
ADV
CON3
DET
NOUN
NUM
PRT
PRON
VERB

X

Meaning
adjective
adposition
adverb
conjunction
determiner. article
noun
numeral
particle
pronoun
verb
punctuation marks
other

English Examples
new, good, high, special, big, local
on, of, at, with, by, into, under
really, already, still, early, now
and, or, but, if, while, although
the, a, some, most, every, no, which
vear, home, costs, time, Africa
twenty-four, fourth, 1991, 14:24
at, on, out, over per, that, up, with
he, their, her, its, my, I, us
is, say, told, given, playing, would

!

ersatz, esprit, dunno, gr8, univeristy
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Sequential Data Labeling

Output label Y; 1 Y Y 1

1 1 !
cassier () — () — () tnae.
t 1

time?
I

Input Xt—l Xt Xt-|-1
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Recurrent Neural Networks

Output label Y; i | }/t )/t—l— 1

Internal state
-
(memory)
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Hidden State Update

Updating function
)/ with parameters W

/
:() l/lt = fW(h;—hX{)

X Hidden state Hidden state Input at
at time t at time t-1 time t
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Using the Hidden State

14 h; = fW(ht—hXt)
y: = fw (hy)




Recurrent Neural Networks

Output label Yt_ 1 l/;g }/t—l—l

1 1 1
hy_—— hy —hy—
1 1 1

Internal state
(memory)

nput - X1 Xt Xt41
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Vanilla RNN

Hidden state updating rule
11/ l;lt = tanh(‘//‘/hhht—l + ‘;Va:h}it)
RNN-:>m><1 m X m m[<1 mxmn nxl1
|
X tanh tanh(x) - f Y = Whyht

e — 1

e +1 ?0 l X 1 m, X 1
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RNN Computation Graph
Y1 y2 Y3

The same set of weights for different time steps fW fW’
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RNN Training

Loss -—

N
Y1—Li Yo— 12 Y3— L3
I | |
.in - -

Gradients




Backpropagation through Time

__—— A

Hidden| & | & = = = B = =  » - - ] - > - >

state

Output
label

Input
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Truncated Backpropagation through Time

Loss

VAN
Run forward and backward

A 4 4 4 Ay A through chunks of the sequence
instead of whole sequence
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Truncated Backpropagation through Time

Loss
[ l L N\
I R I D I Y T e T | Carry hidden states forward in
time forever, but only
> ™Ittt backpropagate for some

S Y Y Y S Y Y A Y SO O N Y| smaller number of steps
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Truncated Backpropagation through Time

Loss

NARERN

/ [ [ |
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Vanilla RNN Gradient Flow

Yi h; = ta,nh(Whhht_l -+ thxt)

A

4 ) ht—l
W—>?—> tanh = tanh ((Whh th) ( s ))

ht-1 > stack - ht — teunk (W (ht—1>>
N i y “t
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Vanilla RNN Gradient Flow

?oarc:::p::sﬁi?)ﬁggw(\)/(ln " y hy = tanh(Wpphi—1 + Wanzy)

(actually W, T) t h

f b (0w (750)

W_=( )= tanh n
o bl (w ( ))
h > stack > h Lt
t-1 T t

N | Y,

X oM — tanh' (Whinhi—1 + Wapxi )Why,

t Oht 1
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Vanilla RNN Gradient Flow




Vanilla RNN Gradient Flow

« Vanishing || Oh
BLT 8LT (HT Bht ) 8}1,1 gradients 8ht_1

ow « Exploding Ohy

H2<1

2 >1

gradients H Ohy_1



https://en.wikipedia.org/wiki/Matrix_norm

Vanilla RNN Gradient Flow

Ohy
Exploding gradients | O |2 >1

* Gradient clipping grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
grad *= (threshold / grad_norm)

Ohy
1
Iz <

* Change RNN architecture

Vanishing gradients
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Long Short Term Memory (LSTM)

LSTM
Vanilla RNN
Input gate 7 o
ht — tanh W ht_l forget gate f a ht_l
Lt = 44
output gate | O o Lt
update g tanh
L . cel =[O 1+10g
Sigmoid

Hidden state iy = 0  tanh(cy)

o(z)=1/(1+e7%) ) J/

Store Cell and hidden states
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Long Short Term I\/Iemory (LSTM)

a : : :
C. 1 > O—> + —> C, >~ X sigmoid | —— | |
‘ \ h sigmoid | — | f
W
W_’? Q}Q taf“ vector from sigmoid | — | o
h ——> gtack - . 1, before (h)
AN T 0 "o ht/ tanh — | g
X
X 4h x 2h 4h 4*h
1 g
fl_| o hi—1
ol | o W( txt )  ¢: update, how much to write to cell
g tanh  i: Input gate, whether to write to cell
a=fOc1+i0g « f:. Forget gate, whether to erase cell
hi = o ® tanh(c;) « 0: Output gate, how much to reveal cell
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Long Short Term Memory (LSTM)

Make the RNN easier to preserve information
over many steps

*E.g,f=1andi=0 /z\ / o \
f o o 7,74 (ht_1>
* This is difficult for vanilla RNN ol — o Ty
\g/ \tanh)

LSTM does not guarantee that there is no

vanishing or exploding gradient ¢t =fOc-1+10g

hy = o ® tanh(c;)

It provides an easier way to learn long-
distance dependencies
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Gated Recurrent Unit (GRU)

zt = 0g(Wozy + Uhy—1 + ;)
yIt] Tt = Og (Wrmt + U hi—q + br)

L he = ¢n(Whae + Up (e © hy_1) + by)
hlt]

hie1l> 1 : u he =(1—2)0h1+206h
rit]
Cx)< )zt ht] e x;: input vector

>~ 0 > 0o |)tanh e h;: output vector
F N . / J 0 iz,t: candidate activation vector
\ X / e 2;: Update gate vector
x[t] e 7'y : reset gate vector

e« W, U and b: parameter matrices and vector
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https://en.wikipedia.org/wiki/Gated_recurrent_unit

GRUs vs. LSTMs

Both have a forget gate
GRU has fewer parameters, no output gate

GRUs have similar performance compared to LSTMs, have shown
better performance on certain datasets

ﬁI-D THE UNIVERSITY OF TEXAS AT DALLAS



Recurrent Neural Networks

many to many one to many many to one many to many

E q.. action recoanition E.g., image E.g., action prediction, E.g., Video Captioning
-9 9 captioning, image -> sequences of frames -  Sequence of video frames ->
on video frames ) :
sequences of words > action class caption
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Recurrent Units on CNN Feature

. Convolution
+ RelLU
Time t Labels
Max Pooling
oWO .
o ? Concatenation

o»°

data association ' Deconvolution

' Addition

' Recurrent Unitsr

RGB Imag
Time t+1

Labels

Depth Imag DA-RNN. Xiang & Fox, RSS’17I
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Summary
RNNs can be used for sequential data to capture dependencies in time

LSTMs and GRUs are better then vanilla RNNs

It is difficult to capture long-term dependencies in RNNs

Use transformers (next lecture)
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Further Reading

Deep Learning Textbook: Sequence Modeling: Recurrent and Recursive Nets
Stanford CS231n, lecture 10, Recurrent Neural Networks

Long Short Term Memory

Gated Recurrent Units
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https://www.deeplearningbook.org/contents/rnn.html
http://cs231n.stanford.edu/
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/pdf/1412.3555.pdf

