

Structure from Motion and SLAM

CS 4391 Introduction to Computer Vision Professor Yapeng Tian Department of Computer Science

Slides borrowed from Professor Yu Xiang

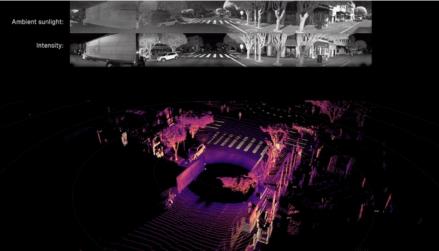
How to Recover the 3D World from Images?

Structure from Motion (SfM)

- Structure: the geometry of the 3D world
- Motion: camera motion
- Input: a set of images (no need to be videos)
- From computer vision

Simultaneous Localization and Mapping (SLAM)

- Localization: camera pose
- Mapping: build the geometry of the 3D world
- Input: video sequences
- From robotics

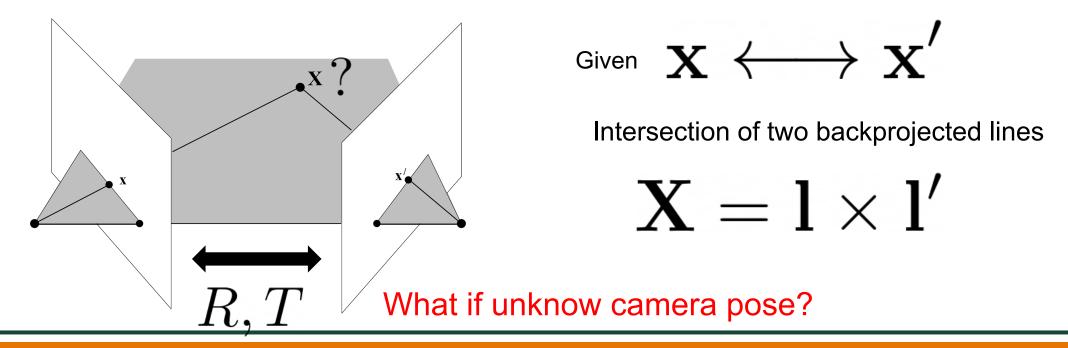


Point cloud captured on an Ouster OS1-128 digital lidar sensor

Triangulation

Idea: using images from different views and feature matching

Triangulation from pixel correspondences to compute 3D location

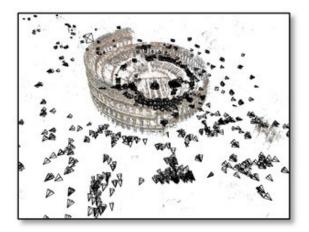


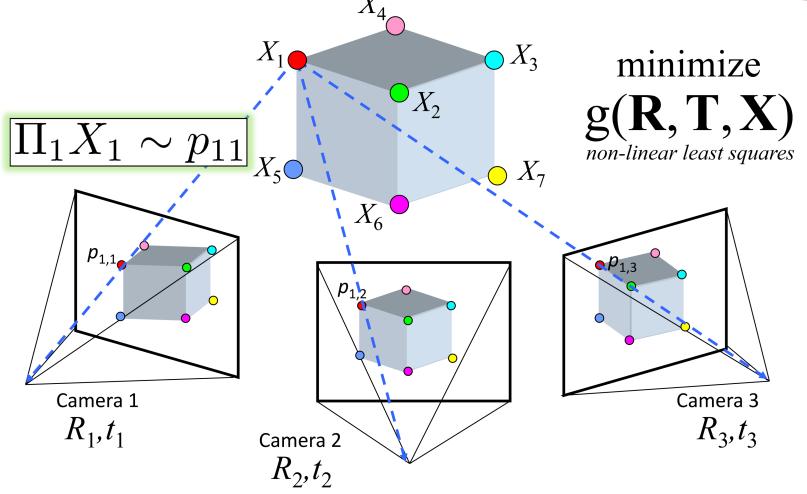
Input

• A set of images from different views

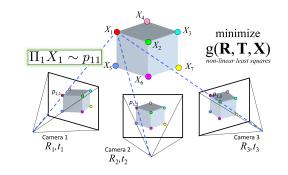
Output

- 3D Locations of all feature points in a world frame
- Camera poses of the images





THE UNIVERSITY OF TEXAS AT DALLAS



Minimize sum of squared reprojection errors

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| \mathbf{P}(\mathbf{x}_i, \mathbf{R}_j, \mathbf{t}_j) - \begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix} \right\|^2$$

m points, n images
Indicator variable:
is point i visible in image j?
Projection
$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \mathbf{R}\mathbf{x} + \mathbf{t}$$
$$v' = f_y \frac{y'}{z'} + p_y$$
$$\begin{bmatrix} u' \\ v' \end{bmatrix} = \mathbf{P}(\mathbf{x}, \mathbf{R}, \mathbf{t})$$

How to minimize

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| \mathbf{P}(\mathbf{x}_i, \mathbf{R}_j, \mathbf{t}_j) - \begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix} \right\|^2$$

A non-linear least squares problem (why?)

• E.g. Levenberg-Marquardt

The Levenberg-Marquardt Algorithm

Nonlinear least squares $\hat{\boldsymbol{\beta}} \in \operatorname{argmin}_{\boldsymbol{\beta}} S(\boldsymbol{\beta}) \equiv \operatorname{argmin}_{\boldsymbol{\beta}} \sum_{i=1}^{m} \left[y_i - f(x_i, \boldsymbol{\beta}) \right]^2$

An iterative algorithm

- Start with an initial guess β_0
- For each iteration $\beta \leftarrow \beta + \delta$

How to get δ ?

- Linear approximation $f(x_i, \beta + \delta) \approx f(x_i, \beta) + \mathbf{J}_i \delta$ $\mathbf{J}_i = \frac{\partial f(x_i, \beta)}{\partial \beta}$
- Find to $igside{\delta}$ minimize the objective $S\left(oldsymbol{eta}+oldsymbol{\delta}
 ight)pprox\sum_{i=1}^m\left[y_i-f\left(x_i,oldsymbol{eta}
 ight)-\mathbf{J}_ioldsymbol{\delta}
 ight]^2$

Wikipedia

The Levenberg-Marquardt Algorithm

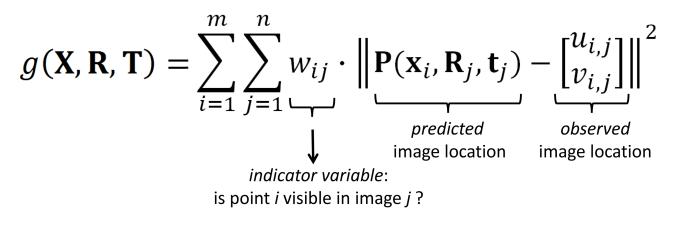
Vector notation for
$$S\left(oldsymbol{eta}+oldsymbol{\delta}
ight)pprox\sum_{i=1}^{m}\left[y_{i}-f\left(x_{i},oldsymbol{eta}
ight)-\mathbf{J}_{i}oldsymbol{\delta}
ight]^{2}$$

$$\begin{split} S\left(\boldsymbol{\beta} + \boldsymbol{\delta}\right) &\approx \left\|\mathbf{y} - \mathbf{f}\left(\boldsymbol{\beta}\right) - \mathbf{J}\boldsymbol{\delta}\right\|^{2} \\ &= \left[\mathbf{y} - \mathbf{f}\left(\boldsymbol{\beta}\right) - \mathbf{J}\boldsymbol{\delta}\right]^{\mathrm{T}}\left[\mathbf{y} - \mathbf{f}\left(\boldsymbol{\beta}\right) - \mathbf{J}\boldsymbol{\delta}\right] \\ &= \left[\mathbf{y} - \mathbf{f}\left(\boldsymbol{\beta}\right)\right]^{\mathrm{T}}\left[\mathbf{y} - \mathbf{f}\left(\boldsymbol{\beta}\right)\right] - \left[\mathbf{y} - \mathbf{f}\left(\boldsymbol{\beta}\right)\right]^{\mathrm{T}}\mathbf{J}\boldsymbol{\delta} - \left(\mathbf{J}\boldsymbol{\delta}\right)^{\mathrm{T}}\left[\mathbf{y} - \mathbf{f}\left(\boldsymbol{\beta}\right)\right] + \boldsymbol{\delta}^{\mathrm{T}}\mathbf{J}^{\mathrm{T}}\mathbf{J}\boldsymbol{\delta} \\ &= \left[\mathbf{y} - \mathbf{f}\left(\boldsymbol{\beta}\right)\right]^{\mathrm{T}}\left[\mathbf{y} - \mathbf{f}\left(\boldsymbol{\beta}\right)\right] - 2\left[\mathbf{y} - \mathbf{f}\left(\boldsymbol{\beta}\right)\right]^{\mathrm{T}}\mathbf{J}\boldsymbol{\delta} + \boldsymbol{\delta}^{\mathrm{T}}\mathbf{J}^{\mathrm{T}}\mathbf{J}\boldsymbol{\delta}. \\ &\xrightarrow{\text{https://www.cs.ubc.ca/~schmidtm/Cours}}{s/340-F16/linearQuadraticGradients.pdf} \end{split}$$

Take derivation with respect to δ and set to zero $\left(\mathbf{J}^{\mathrm{T}} \mathbf{J}
ight) \boldsymbol{\delta} = \mathbf{J}^{\mathrm{T}} \left[\mathbf{y} - \mathbf{f} \left(\boldsymbol{\beta}
ight)
ight]$

Levenberg's contribution $\left(\mathbf{J}^{\mathrm{T}}\mathbf{J} + \lambda \mathbf{I} \right) \boldsymbol{\delta} = \mathbf{J}^{\mathrm{T}} \left[\mathbf{y} - \mathbf{f} \left(\boldsymbol{\beta} \right) \right]$ damped version

$$eta \leftarrow eta + \delta$$
 Wikipedia

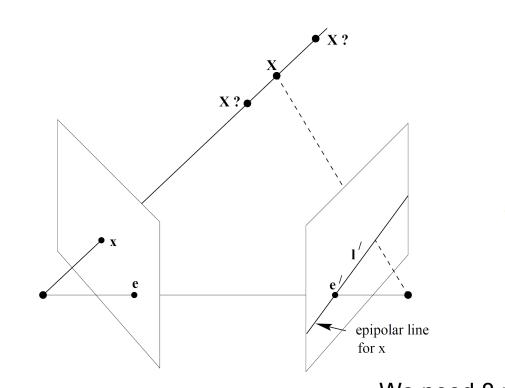


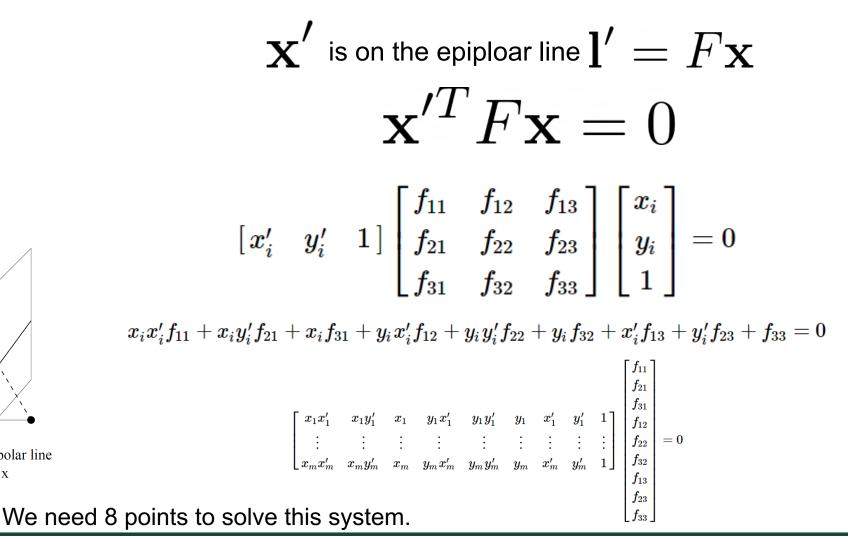
 $\beta = (\mathbf{X}, \mathbf{R}, \mathbf{T})$

How to get the initial estimation β_0 ?

Random guess is not a good idea.

Fundamental matrix





$$\mathbf{x}'^T F \mathbf{x} = 0$$

If we know camera intrinsics in SfM

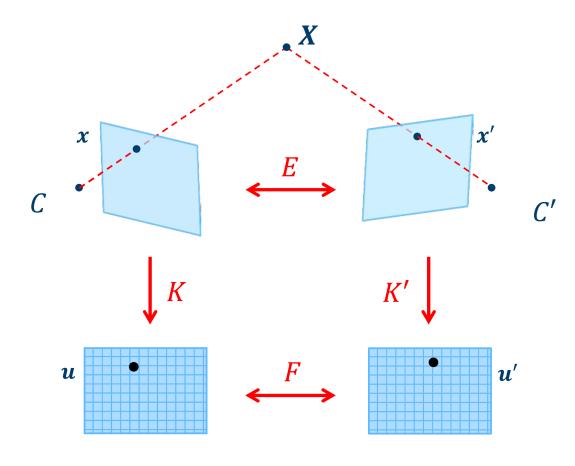
$$(K'^{-1}\mathbf{x}')^T E(K^{-1}\mathbf{x}) = 0$$

Normalized coordinates

$$F = K'^{-T} E K^{-1}$$

Essential matrix E

$$E = K'^T F K$$

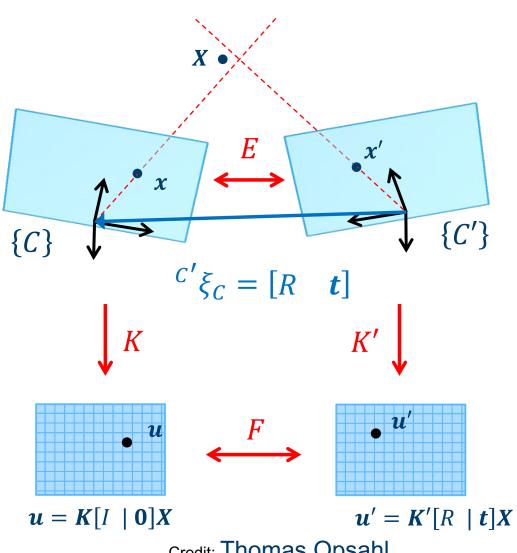


Credit: Thomas Opsahl

Recover the relative pose *R* and *t* from the essential matrix E up to the scale of *t*

$$\mathbf{F} = [\mathbf{e}']_{ imes} \mathbf{K}' \mathbf{R} \mathbf{K}^{-1} = \mathbf{K}'^{-\mathsf{T}} [\mathbf{t}]_{ imes} \mathbf{R} \mathbf{K}^{-1}$$
 $E = K'^T F K$

$$\mathbf{E} = [\mathbf{t}]_{\times} \mathbf{R}$$



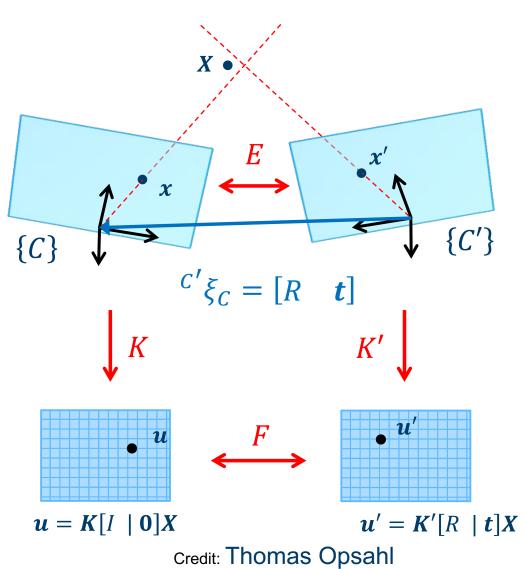
Credit: Thomas Opsahl H. C Longuet-Higgins, *A computer algorithm for reconstructing a scene from two projections*, 1981

$$\mathbf{E} = [\mathbf{t}]_{ imes} \mathbf{R}$$

$$E \cdot \mathbf{t} = [\mathbf{t}]_{\times} R \cdot \mathbf{t}$$
$$= (\mathbf{t} \times R) \cdot \mathbf{t} = 0$$

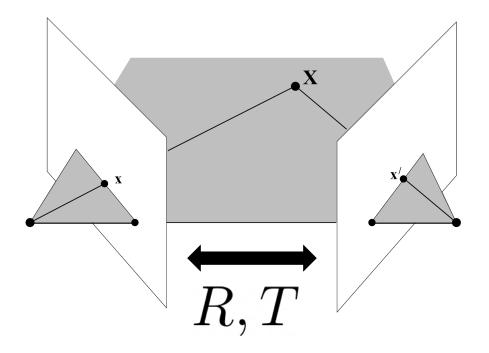
Use SVD to solve for \boldsymbol{t}

$$R = -[\mathbf{t}]_{\times} E$$



H. C Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, 1981

Triangulation



Estimated from essential matrix E

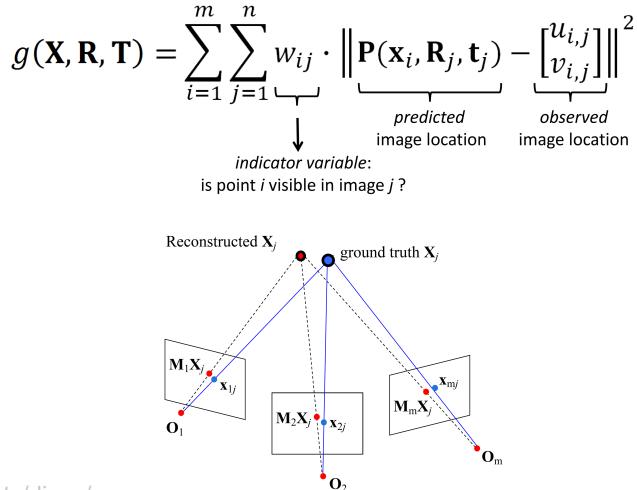
Intersection of two backprojected lines

 $\mathbf{X} = \mathbf{l} \times \mathbf{l}'$

How to get the initial estimation $~eta_0$? $eta = (\mathbf{X}, \mathbf{R}, \mathbf{T})$

Bundle adjustment

- Iteratively refinement of structure (3D points) and motion (camera poses)
- Levenberg-Marquardt algorithm



Examples: http://vision.soic.indiana.edu/projects/disco/

Build Rome in One Day

https://grail.cs.washington.edu/rome/

Simultaneous Localization and Mapping (SLAM)

Localization: camera pose tracking

Mapping: building a 2D or 3D representation of the environment

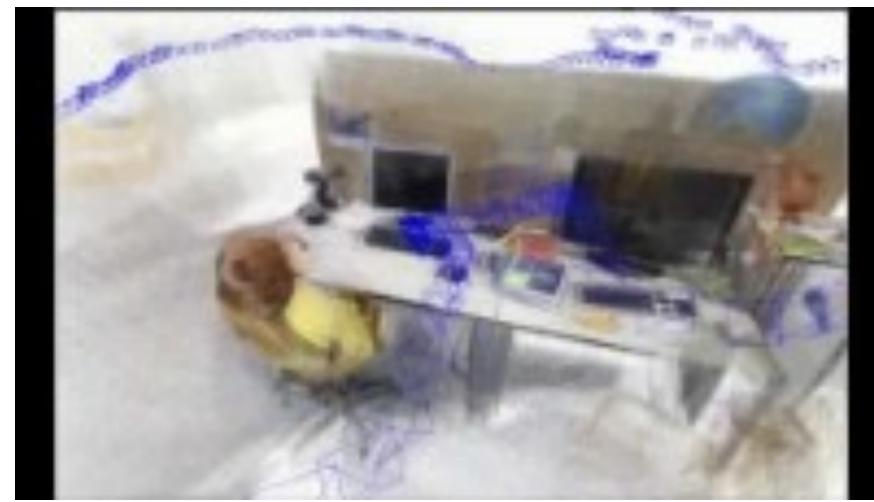
The goal here is the same as structure from motion but with video input

ORB-SLAM2

• Point cloud and camera poses

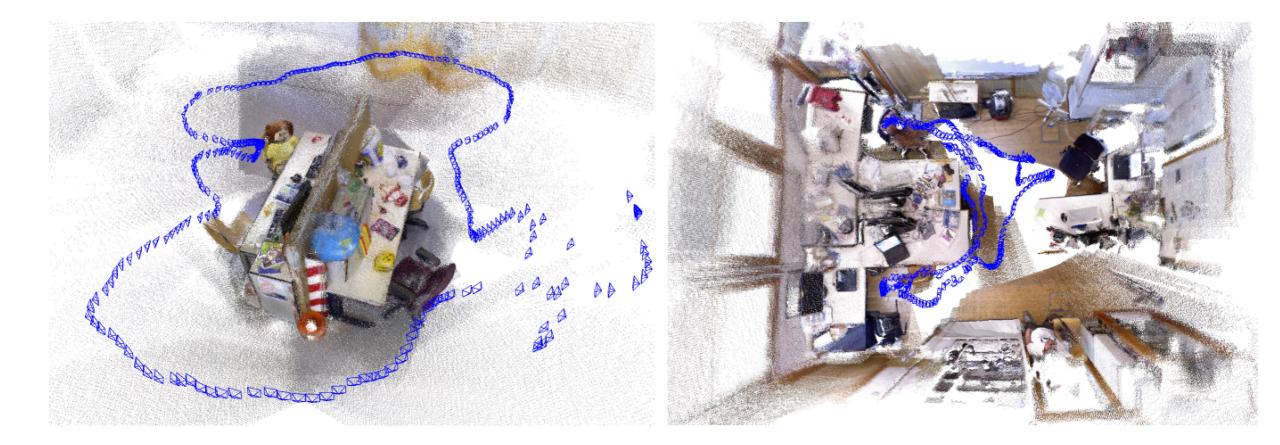
Case Study: ORB-SLAM

- Oriented FAST and Rotated BRIEF (ORB)
- Tracking camera poses
 - Motion only Bundle Adjustment (BA)
- Mapping
 - Local BA around camera pose (3D location refinement)
- Loop closing
 - Loop detection



https://webdiis.unizar.es/~raulmur/orbslam/

Case Study: ORB-SLAM



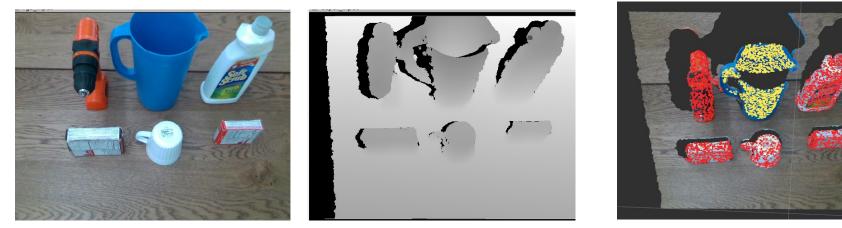
RGB-D SLAM

RGB-D cameras

Intel RealSense

Microsoft Kinect

Using depth images: 3D points in the camera frame



Point Cloud

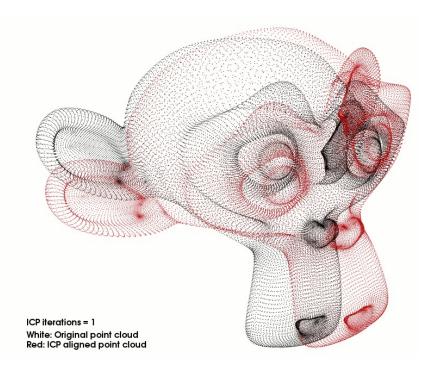
RGB-D SLAM

Camera pose tracking

• Iterative closest point (ICP) algorithm

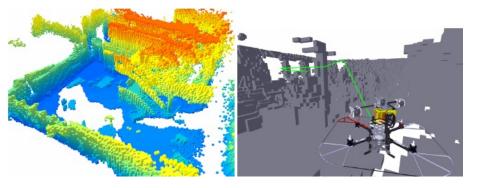
Input: source point cloud, target point cloud Output: rigid transformation from source to target

- For i in range(N)
 - For each point in the source, find the closest point in the target (correspondences)
 - Estimation R and T using the correspondences
 - Transform the source points using R and T



RGB-D SLAM

Mapping: fuse point clouds into a global frame Map representation



Voxels

Point clouds

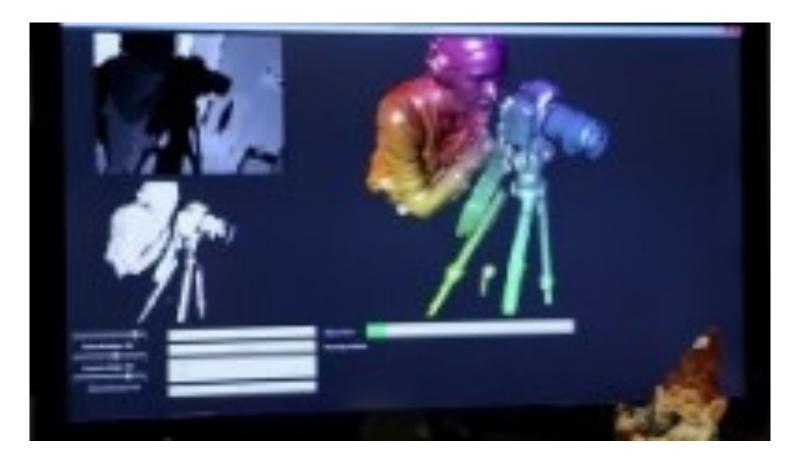
ORB-SLAM

Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera. Huang, et al. 2011

Surfels (small 3D surface)

ElasticFusion

KinectFusion



https://youtu.be/of6d7C_ZWwc

Further Reading

Chapter 11, Computer Vision, Richard Szeliski

KinectFusion: Real-Time Dense Surface Mapping and Tracking. Newcombe et al., ISMAR'11

ORB-SLAM https://webdiis.unizar.es/~raulmur/orbslam/