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Abstract. Multi-contrast magnetic resonance imaging (MC-MRI) has
been widely used for the diagnosis and characterization of tumors and
lesions, as multi-contrast MR images are capable of providing comple-
mentary information for more comprehensive diagnosis and evaluation.
However, it usually suffers from long scanning time to acquire multi-
contrast MR images; in addition, long scanning time may lead to motion
artifacts, degrading the image quality. Recently, many studies have pro-
posed to employ the fully-sampled image of one contrast with short ac-
quisition time to guide the reconstruction of the other contrast with long
acquisition time so as to speed up the scanning. However, these studies
still have two shortcomings. First, they simply concatenate the features
of the two contrast images together without digging and leveraging the
inherent and deep correlation between them. Second, as aliasing arti-
facts are complicated and non-local, sole image domain reconstruction
with local dependencies is far from enough to eliminate these artifacts
and achieve faithful reconstruction results. We present a novel Dual-
Domain Cross-Attention Fusion (DuDoCAF) scheme with recurrent
transformer to comprehensively address these shortcomings. Specifically,
the proposed CAF scheme enables deep and effective fusion of features
extracted from two modalities. The dual-domain recurrent learning al-
lows our model to restore signals in both k -space and image domains, and
hence more comprehensively remove the artifacts. In addition, we tame
recurrent transformers to capture long-range dependencies from the fused
feature maps to further enhance reconstruction performance. Extensive
experiments on public fastMRI and clinical brain datasets demonstrate
that the proposed DuDoCAF outperforms the state-of-the-art methods
under different under-sampling patterns and acceleration rates.

Keywords: MRI Reconstruction · Cross-attention Fusion · Recurrent
Transformer · Dual-domain Reconstruction
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1 Introduction

Magnetic resonance imaging (MRI) is widely used in clinical practice, as it is non-
invasive and capable of providing superior soft tissue contrast. Multi-contrast
(MC) MR images are obtained from different pulse sequences, which form the
image intensity changes between different tissues [14,11]. For example, in brain
examination, the T1 weighted images (T1WIs) are used for observing the mor-
phological information, while the fluid attenuated inversion recovery (FLAIR)
images are used to detect the edema and inflammation[12]. Similarly, in knee
imaging, proton density weighted images (PDWIs) provide the knee structure
information while fat-suppressed proton density weighted images (FS-PDWIs)
can suppress fat signals and highlight cartilage ligaments[2]. Unfortunately, MR
imaging is inherently time-consuming as data are acquired sequentially in k-
space. The total scanning time for a typical clinical protocol is about 15∼20
minutes. To this end, reconstructing high-quality MC images from limited ac-
quired measurements to reduce scanning time is highly demanded in practice.

Recently, several studies[17,15,20,3,4,11,21,5] demonstrated that it is a promis-
ing way to employ a fully-sampled reference image of one contrast with short
acquisition time, such as T1WI and PDWI, to reconstruct the under-sampled
target image of the other contrast with longer scanning time, such as FLAIR
and FS-PDWI. A key concern of this reconstruction task is that how to fuse
the two or more MC images so that their complementary information can be
sufficiently leveraged. Early studies either simply stack the MC images in the
input layer [17,15] or extract MC features in different branches separately and
then stack information in deeper layers, which ignore the inherent and rich corre-
lations among different contrasts. Later, generative adversarial network (GAN)
based models, such as rsGAN[3] and Y-net[4], have been developed for syner-
gistic recovery of under-sampled multi-contrast acquisitions. Some multi-scale
integration networks [11,5] have also been proposed to extract multi-scale in-
formation among the contrasts and incorporate data consistency units for MRI
acceleration. Although certain improvement has been made, these algorithms
still lack of effective mechanisms to sufficiently harness the correlations between
MC images. In addition, the long-range dependencies in the fused features are
not well modeled for more faithful reconstruction.

Recently, many transformer based models [7,10] have been introduced to cap-
ture global interactions between contexts for fast MRI reconstruction. Feng et
al.[7] proposed a task transformer for multi-task learning, which allows to trans-
fer shared structure representation to the task specific branch for MRI recon-
struction and super-resolution. Korkmaz et al.[10] introduced zero-shot learned
adversarial transformers for unsupervised reconstruction in accelerated MRI.
However, these methods focus on restoring images in mono-space and do not ex-
ploit any k-space information, which is essential for our task. As each signal in the
k-space is estimated from all the values in image domain via Fourier transform,
only using constrains in sole image-space cannot effectively reconstruct high-
quality aliasing-free images. In this regard, a dual domain recurrent network
(DuDoRNet)[21] is proposed to accelerate MR imaging, which demonstrates the
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Fig. 1: The architecture of our proposed Dual-Domain Cross-Attention Fusion
based Recurrent Transformer (DuDoCAF) for fast multi-contrast MR Imaging.

advantages of cross domain learning. Inspired by this work, we propose a novel
MC MR reconstruction method via cross domain learning.

To address above-mentioned limitations, we propose a novel dual-domain
cross-attention fusion mechanism (DuDoCAF) with recurrent transformer for
fast multi-contrast MR Imaging. Unlike existing models that merely concate-
nate the features of MC MR images, the proposed CAF mechanism is able to
deeply and effectively fuse the features extracted from these two contrast images
in a bidirectional way so that complementary information of two contrasts can be
sufficiently harnessed. We further tame the residual-reconstruction transformer
to model the long-range dependencies based on the fused feature maps in both
domains to counteract aliasing artifacts and faithfully reconstruct the target im-
ages. In addition, the recurrent dual-domain learning makes the reconstruction
results more interpretable, which is important in clinical practice. Extensive ex-
periments on two representative datasets demonstrate that our proposed method
gains remarkable margins over several state-of-the-art methods under different
sampling patterns and acceleration factors.

2 Methods

2.1 Network Architecture

The network architecture of the proposed model is illustrated in Fig. 1. We
denote the complex-valued fully-sampled k-space as k. The corresponding image
x reconstructed from k can be obtained by x = F−1k, where F−1 is the inverse
Fourier Transform (IFT). To accelerate MR imaging, we employ binary maskM
to define the under-sampling trajectory, e.g. cartesian, radial, and spiral. Thus,
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the under-sampled k-space can be defined as ku = Mk, and correspondingly,
xu = F−1Mk. Given the under-sampled k -space data ku of the target modality
(e.g., FLAIR and FS-PDWI), and the fully-sampled image xref of the reference
modality (e.g., T1WI and PDWI), we aim to reconstruct the MR image x̃uN

from
ku, where N is the number of recurrent blocks in the proposed model. As shown
in Fig.1, the proposed model is mainly composed of three modules: 1) the cross-
attention fusion (CAF) module, which is employed to deeply and effectively fuse
information of different modalities, 2) the residual-reconstruction transformer
(RRT), which is harnessed to more faithfully reconstruct the target modality in
both domains by capturing more long-range dependencies in the fused k-space
and image, 3) the recurrent restoration blocks with data consistency (DC) layer
in both k -space and image-space. We spell out their mechanisms as follows.

2.2 Cross-Attention Fusion

In order to ensure that the reference image can effectively guide the target image
reconstruction, we need to fuse the two different contrast images. Inspired by
[1,18,13], we designed the cross-attention fusion module to establish a bidirec-
tional correspondence between the reference and target images and perform dual
feature aggregation.

First, to extract shallow features of under-sampled target ku ∈ RH×W×2 and
the reference kref ∈ RH×W×2, we employ a 3×3 convolutional layer conv to ob-
tain an initial representation Fu = Conv(ku), Fref = Conv(kref ) ∈ RH×W×C .
Then, the features are reshaped into non-overlapping local windows of size N×N
with the number H×W

N2 . We obtain F̂u, F̂ref ∈ Rd×C after the embedding opera-
tion, where d = H×W

N2 N2. The CAF block consists of two sub-modules: reference
guide target (RGT) and target guide reference (TGR), and its mechanism can
be formulated as:

FCAF = concat(conv(RGT(F̂u, F̂ref ), conv(TGR(F̂u, F̂ref ))), (1)

where FCAF indicates the fused feature of the two contrast images, which will be
fed into the following RRT module. The operator concat means the channel-wise
concatenation operator.

Then, the attention mechanism jointly learns the W ref
Q ,W ref

K ,W ref
V and

Wu
Q,W

u
K ,W

u
V , which are the query (Q), key (K), and value (V) weight matrices

for reference and target images, respectively. Here, all weight metrics have the
same dimensions d × d. Take the RGT for example, the attention is calculated
by encoding target as queries and taking reference as keys and values:

Qu = F̂uW
ref
Q ,Kref = F̂refW

ref
K , Vref = F̂refW

ref
V ,

Attention = softmax

(
Qu ·KT

ref√
d

)
Vref .

(2)

The TGR is similar to RGT, except that the reference is encoded to queries and
target is used as keys and values and thus form a cross-attention mechanism.
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As described in [16], the attention can be learned over multiple heads in paral-
lel. If the attention is split into H heads, the dimension of the output of each
head is dhead = d

H . Then, the multi-head self-attention (MSA) mechanism is
implemented to extract information from different representation subspaces:

MultiHeadAttn = concat (head1, · · · , headH)WO,

headi = Attention
(
QWQ

i ,KW
K
i , V W

V
i

)
,

(3)

where WQ
i ∈ Rd×dhead , WK

i ∈ Rd×dhead , WV
i ∈ Rd×dhead and WO ∈ Rd×d are

weights to be learned. Next, the output is sent to a feed-forward Network (FFN)
block consisted of two linear transformation with ReLU activation, defined as:

FFN(x) = max (0, xW1 + b1)W2 + b2, (4)

where W1,W2 and b1,b2 are the weight matrices and biases vectors, respectively.
The LayerNorm (LN) layer is added before both MSA and FFN, and the residual
connection is employed for both parts.

2.3 Residual Reconstruction Transformer

The long-range dependencies embedded in the fused feature maps obtained from
the CAF are essential for efficient and robust image reconstruction, as it is
depending on these dependencies that we reconstruct the target image based
on under-sampled signals. To effectively capture these long-range dependencies,
we develop the RRT module, which consists of three residual swin transformer
block (RSTB) and a convolutional layer. It can be formulated as:

Fi = HRSTBi
(Fi−1) , i = 1, 2, 3,

FRRT = Hconv (Fi) ,
(5)

where F0 = FCAF . Each RSTB contains a patch embedding operator, three
cascaded swin transformer layers (STL) [11], a patch unembedding operator, a
convolution, and a residual connection between the input and output of RSTB.
It can be expressed as:

Fi,0 = HEmbi
(Fi−1)

Fi,j = HSTLi,j
(Fi,j−1) , j = 1, 2, 3

Fi = HCONVi
(HUnembi

(Fi,j) + Fi−1)

(6)

where HEmbi
(·) is the patch embedding from Fi−1 ∈ RH×W×C to Fi,0 ∈ RHW×C ,

and HUnemb i
(·) is the patch unembedding from Fi,j ∈ RHW×C to RH×W×C . The

whole process of the STL can be expressed as:

F ′ = H(S)W−MSA (HLN(F )) + F

F ′′ = HMLP (HLN (F ′)) + F ′
(7)

where F and F ′′ are the input and output of the STL. HMLP(·) and HLN(·) denote
the multilayer perceptron and the layer normalization layer. Windows multi-head
self-attention (W-MSA) and shifted windows multi-head self-attention (SW-
MSA) H(S)W−MSA(·) are alternatively applied in consecutive STLs.
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2.4 Dual-domain Recurrent Learning

Each recurrent block of DuDoCAF contains a k-space block, an image recon-
struction block, and two interleaved data consistency (DC) layers. In i-th restora-
tion block of image domain, the optimization can be expressed as minimizing
the following model:

argmin
θimg

(‖MFHimg(xui
, xref ; θimg)− ku‖22 + λ ‖xf −Himg (xui

, xref ; θimg)‖22),

(8)
where Himg is the image restoration network with parameters θimg, the input
of the network is xui which comes from the (i − 1)-th k -space reconstruction
block and xref is the fully-sampled reference image. The first term is the data
consistency constraint that ensures the consistency of the reconstruction image
in k -space and the second term is a regularization term models the relationship
between the reconstructed image x̃ and the fully-sampled image xf . Similarly,
the k -space reconstruction optimization can be formulated as:

argmin
θk

(‖MHk(kui , kref ; θk)− ku‖
2
2 + λ ‖kf −Hk (kui , kref ; θk)‖

2
2), (9)

where Hk is the k -space reconstruction network with parameters θk. Therefore,
the final loss for DuDoCAF is L =

∑N
i=1 (Limgi + Lki), in which N represents

the number of recurrent blocks.

3 Experiments

Datasets and Implementation We evaluate our proposed method on two
raw MRI datasets: 1) Clinical brain MRI dataset, which was collected using
a 3T Philips Ingenia MRI system (Philips Healthcare, Best, the Netherlands)
scanner, including T1W and FLAIR imaging. The dataset consists of 36 healthy
subjects and 5 patients. We randomly selected 616 images for training and 250
images (150 from healthy subject and 100 from patients) for testing. 2) Public
fastMRI[9] dataset with paired multi-contrast DICOM images. Following[19,6],
we filtered out 240 pairs of PDWI and FS-PDWI knee images, 400 for training
and the rest 80 images for testing. Both datasets are real k-space data and the
matrix size are 256×256. The under-sampling masks include 8× random, 10×
radial and 10× spiral pattern.

Experiments were carried out on a system equipped with GPUs of NVIDIA
Tesla V100 (4 cores, each with 32 GB memory). The Adam optimizer [8] is used
for the training. The model used a batch size of 2 and learning rate of 10−4 for
200 epochs. We set N = 3 recurrent groups in our network. For fair comparison,
the competing methods all use their default parameter settings. Code will be
available at https://github.com/XAIMI-Lab/DuDoCAF.

https://github.com/XAIMI-Lab/DuDoCAF
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GT ZF YNET[4] UF-T2[17] MINet[5] DuDoRNet[21] Ours

Fig. 2: Reconstruction results from different under-sampling trajectory. The sam-
pling pattern mask and difference images are shown on the second, fourth, and
sixth row.

Comparison with state-of-the-arts On both datasets, we have compared
our approach with four recent state-of-the-art methods including: YNet[4], UF-
T2[17], MINet[5] and DuDoRNet[21].The calculated FLOPs (G) and Parame-
ters (M) of all mentioned models are listed in the supplementary material. Fig.2
shows that knee images reconstructed using YNet and UF-T2 still have aliasing
artifacts that are obvious at the edge and in the vessel area. The MINet, DuDoR-
Net and Ours greatly improved the ZF image quality by recovering sharpness
and adding more structural details to the ZF images. However, the yellow arrow
shows that, as for fine vessel information, Ours has better reconstruction perfor-
mance. The reconstructed brain images are shown in supplementary material.

Fig. 3 shows the intermediate results of DuDoCAF with 10× radial under-
sampling. We can observe the gradual improvement of the reconstruction quality
from iteration block N1 to N3. Table 1 shows the mean ± std PSNR and SSIM
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GT ZF N1 N2 Ours

Fig. 3: Visual comparison of DuDoCAF results from each recurrent block using
radial sampling (10×).

Table 1: Quantitative results on two datasets with different under-sampling
masks, in terms of SSIM and PSNR. The best and second-best results are marked
in red and blue, respectively.

Dataset Methods Random (8×) Radial (10×) Spiral (10×)
PSNR SSIM PSNR SSIM PSNR SSIM

Y-net 24.96±1.77 0.79±0.01 25.58±1.62 0.81±0.04 25.13±1.51 0.78±0.04
UF-T2 24.99±1.88 0.79±0.01 25.81±1.55 0.81±0.04 25.80±1.63 0.79±0.04

fastMRI MINet 25.32±2.03 0.81±0.01 26.19±1.94 0.82±0.03 26.11±2.28 0.81±0.03
DuDoRNet 26.14±1.72 0.83±0.01 28.01±1.52 0.86±0.03 26.76±1.91 0.83±0.04

Ours 27.45±1.52 0.86±0.01 28.91±1.32 0.88±0.03 28.90±1.59 0.87±0.03
Y-net 33.91±2.71 0.92±0.02 35.20±2.49 0.31±0.03 33.41±3.90 0.95±0.03
UF-T2 34.02±2.62 0.93±0.02 35.97±2.57 0.95±0.02 33.95±3.95 0.95±0.03

Brain MINet 36.32±2.77 0.95±0.03 36.65±3.62 0.96±0.03 34.23±3.12 0.96±0.04
DuDoRNet 38.28±2.84 0.96±0.02 39.85±3.36 0.97±0.02 38.41±4.27 0.97±0.03

Ours 39.41±2.46 0.96±0.01 41.31±3.22 0.98±0.01 39.82±4.46 0.98±0.02

values on two datasets with different under-sampling masks. As can be seen, the
DuDoCAF yields the best results on all experiments. This indicates that our
model is able to effectively fuse multi-contrast images which boosts the recon-
struction performance. It is worth noting that YNet and UF-T2 reconstructions
are far less than MINet results, which indicates that it is optimal to learn the
interaction between two different contrast images step by step. More impor-
tantly, the DuDoRNet shows the second-best results demonstrates the powerful
reconstruction ability of dual-domain learning.

Ablation Study Two key components are estimated, including: dual-domain
(DD) learning and Cross-Attention Fusion (CAF) with reference image prior
(RP) passing to the network. As shown in Table 2, (A) Baseline represents the
network only consists of Residual Reconstruction Transformer block in the k-
space domain. (B) w/o CAF adds DD learning to the Baseline network. (C)
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Table 2: Ablative study on different settings of DuDoCAF under 8× acceleration
on knee dataset. The best and second-best result are marked in red and blue,
respectively.

Methods CAF DD RP Random(8×) Radial (10×) Spiral (10×)
PSNR SSIM PSNR SSIM PSNR SSIM

Baseline X 25.88±2.01 0.81±0.04 26.91±1.67 0.85±0.05 26.40±1.81 0.84±0.06
w/o CAF X X 26.42±1.94 0.83±0.05 27.18±1.89 0.85± 0.04 26.98±1.73 0.85±0.04
w/o DD X X 26.79±2.02 0.83±0.04 27.95±1.66 0.86± 0.04 27.45±1.78 0.84±0.04
Ours X X X 27.45±1.52 0.86±0.03 28.91±1.32 0.88±0.03 28.90±1.59 0.87±0.03

w/o DD adds the CAF block to the Baseline architecture. (D) Ours indicates
combination of Baseline, DD and CAF module. This indicates that learning
from both k -space and image domain is really important even when adopting
the cross-attention fusion strategy. Besides, the reconstruction results of w/o
CAF are worse than those w/o DD, which clarifies the importance of fusing two
contrast image features and exploiting the deep correlation between them.

4 Conclusion

We proposed a novel dual-domain cross-attention fusion mechanism (DuDoCAF)
with recurrent transformer for fast multi-contrast MR Imaging. Firstly, the CAF
module is able to better fuse the features of the fully-sampled reference images
and under-sampled target images. Besides, the residual-reconstruction trans-
former helps the network to extract more informative features of the image for
the target-contrast image restoration. Furthermore, the adopt dual-domain re-
current learning strategy is helpful to obtain better reconstructed images and
reduce artifacts. Extensive experimental results show that, under different sam-
pling patterns and acceleration factors, our proposed method significantly out-
performs other state-of-the-art methods. In the future, we will extend the Du-
DoCAF from single-coil to a multi-coil reconstruction.
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