

#### Image Formulation: Camera Models

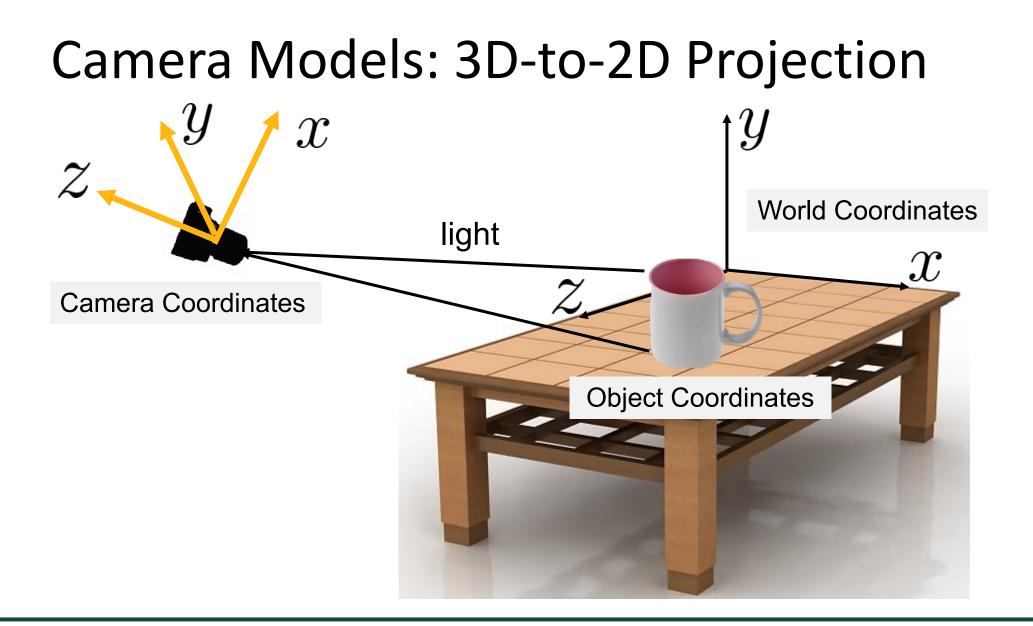
CS 6384 Computer Vision Professor Yapeng Tian Department of Computer Science



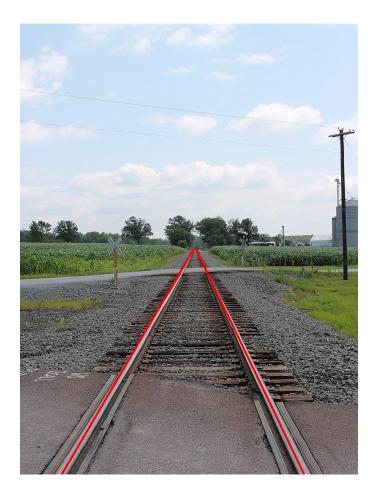
The objects are essentially 3D.

How to project 3D into 2D and capture these images?

amera Model







Q1: Are three balls in a same size?

## Q2: Are the two rail lines parallel?

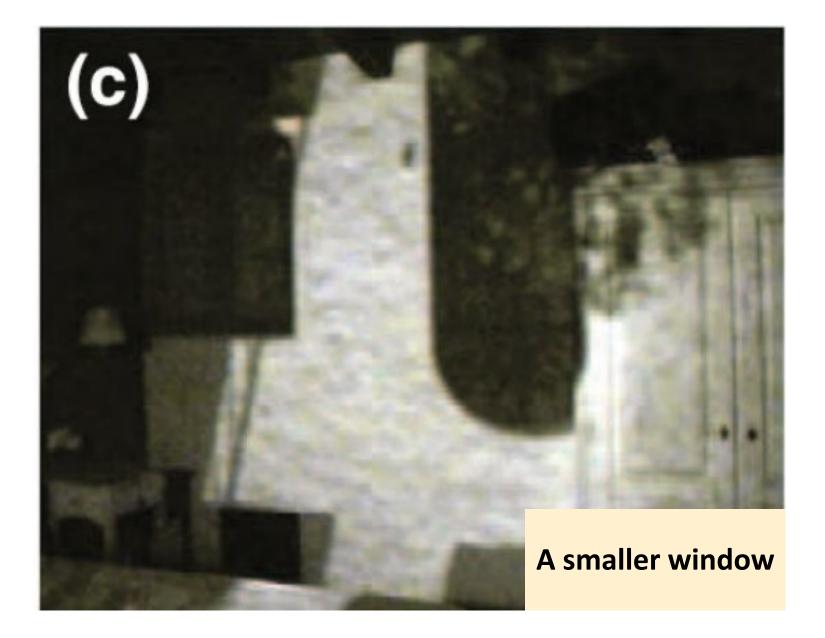
A1&A2: No?

A Living Room What objects or scenes?

#### Largely opened window

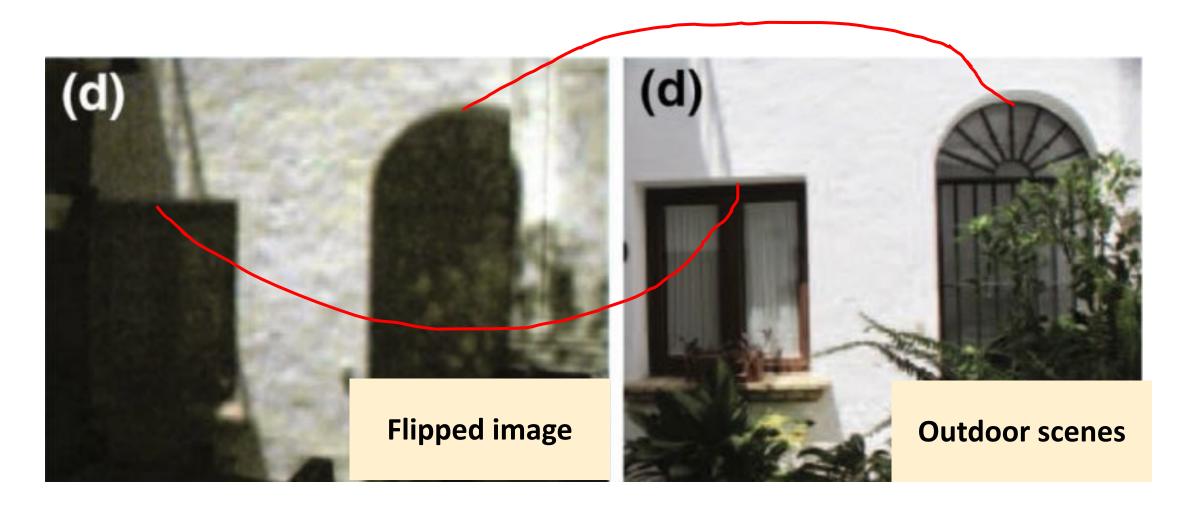


THE UNIVERSITY OF TEXAS AT DALLAS



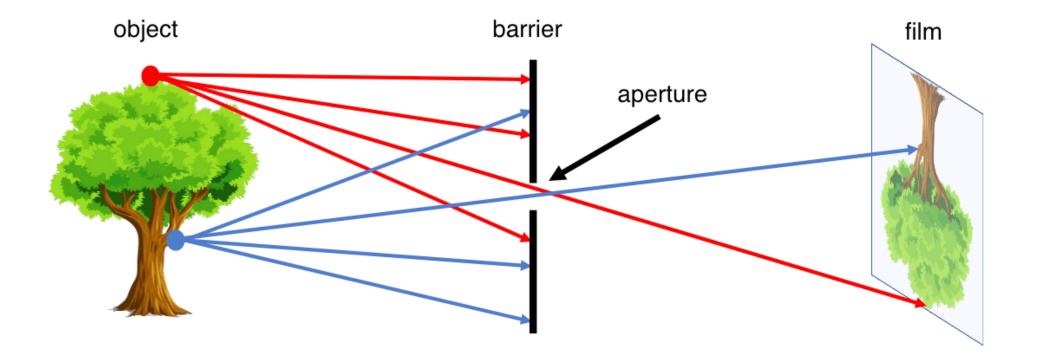
**ID** THE UNIVERSITY OF TEXAS AT DALLAS

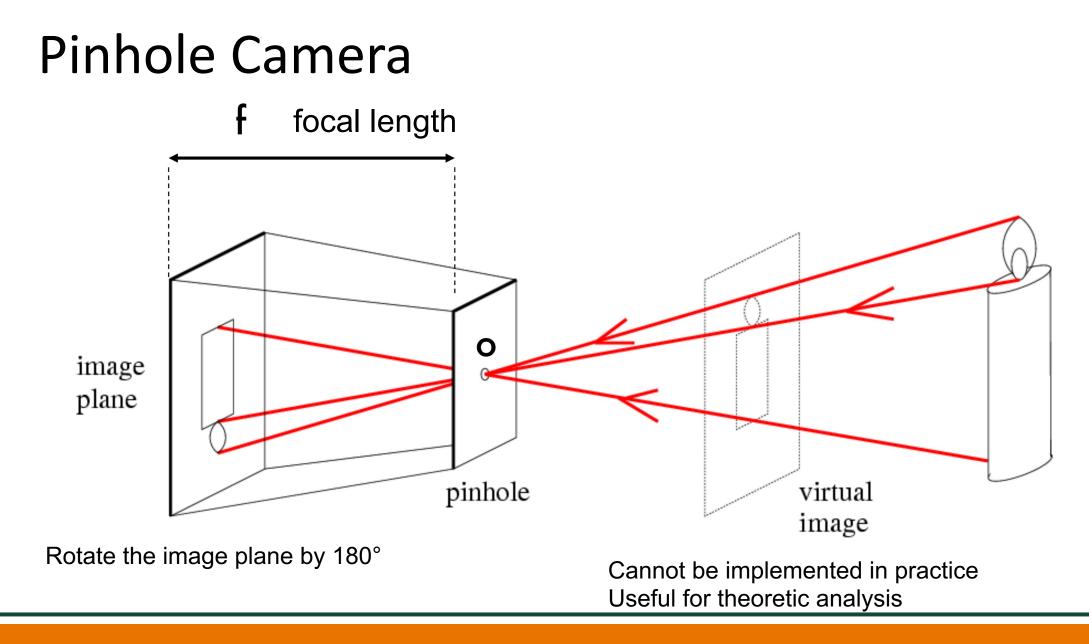
#### Nature Example of Pinhole Camera



THE UNIVERSITY OF TEXAS AT DALLAS

#### Pinhole Camera

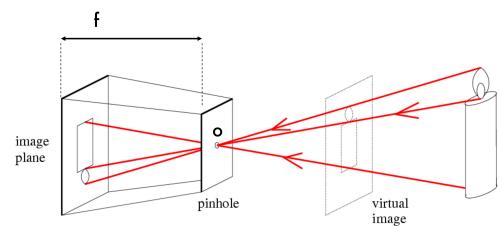




THE UNIVERSITY OF TEXAS AT DALLAS

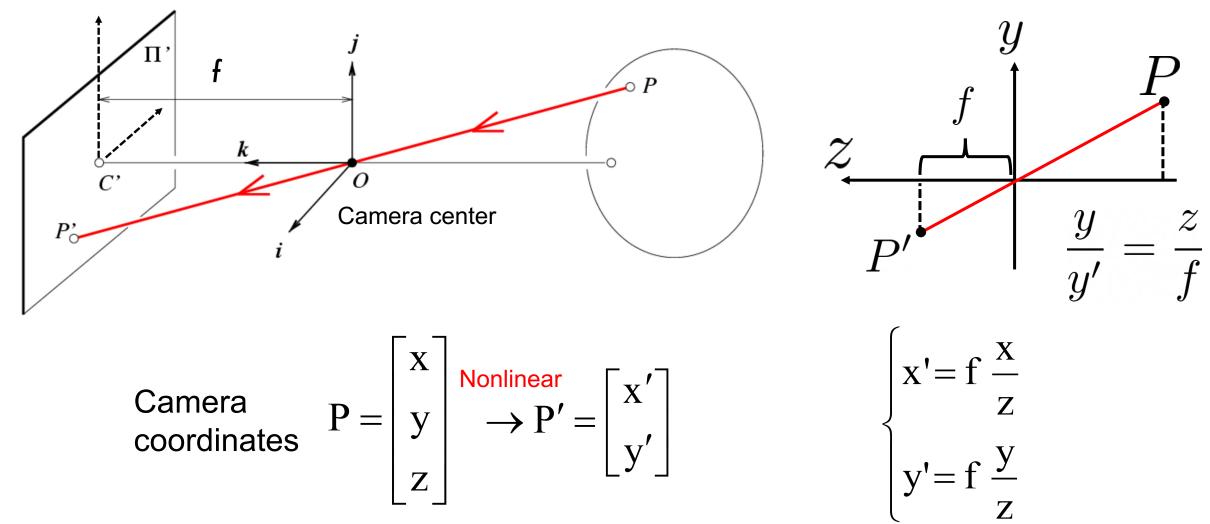
#### Natural Pinhole Cameras





Object: the sun Pinhole: gaps between the leaves Image plane: the ground

#### **Central Projection in Camera Coordinates**

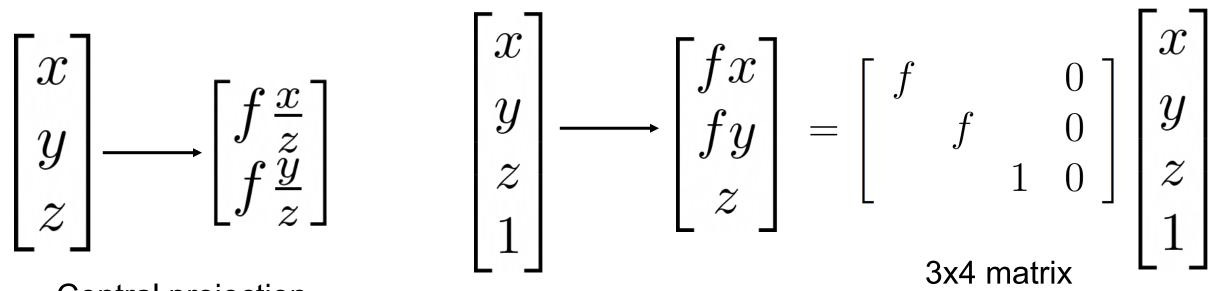


#### Homogeneous Coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
homogeneous image  
coordinates
$$(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
homogeneous scene  
coordinates
$$(z)$$

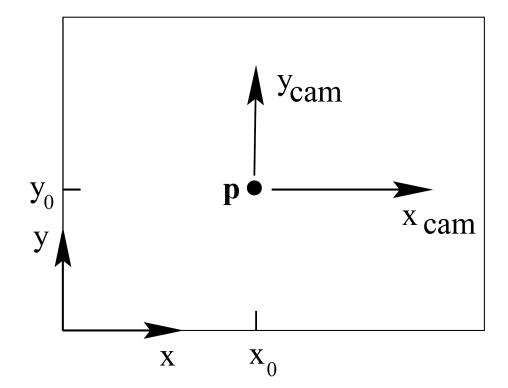
$$(z$$

#### **Central Projection with Homogeneous Coordinates**

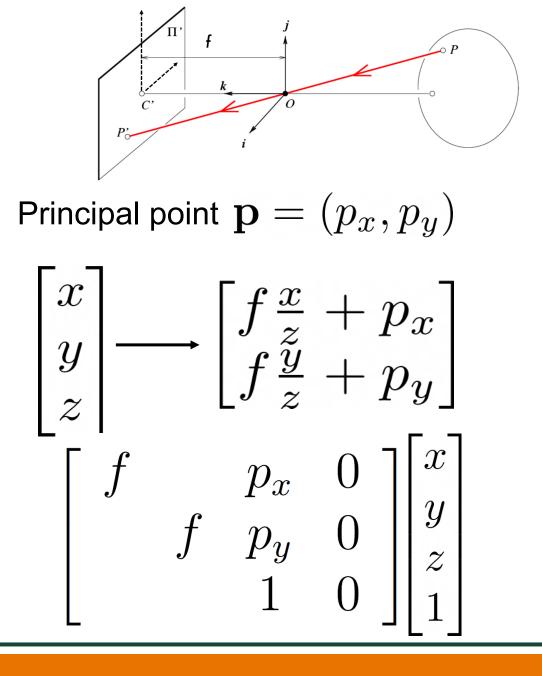


Central projection

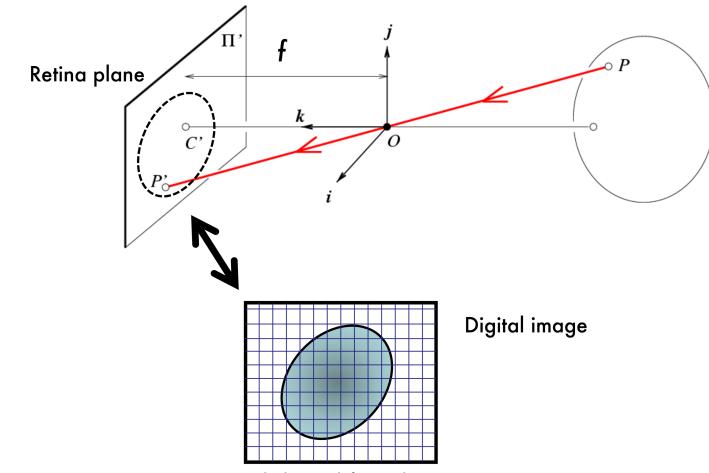
### **Principal Point Offset**



Principle point: projection of the camera center



#### From Metric to Pixels



Pixels, bottom-left coordinate systems

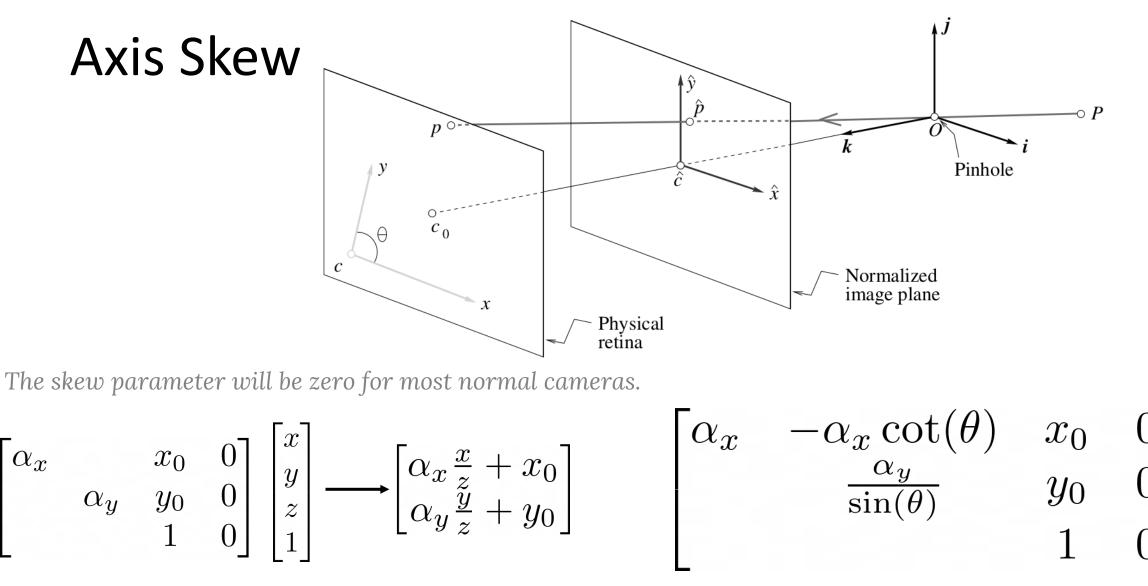
#### From Metric to Pixels

Metric space, i.e., meters  $\int f$ 

Pixel space

$$\begin{bmatrix} f & p_x & 0 \\ & f & p_y & 0 \\ & & 1 & 0 \end{bmatrix} \quad \begin{array}{l} \alpha_x & x_0 & 0 \\ \alpha_y & y_0 & 0 \\ & & 1 & 0 \end{bmatrix} \quad \begin{array}{l} \alpha_x = fm_x \\ \alpha_y = fm_y \\ x_0 = p_x m_x \\ y_0 = p_y m_y \end{array}$$

 $m_x, m_y$  Number of pixel per unit distance



https://blog.immenselyhappy.com/post/camera-axis-skew/

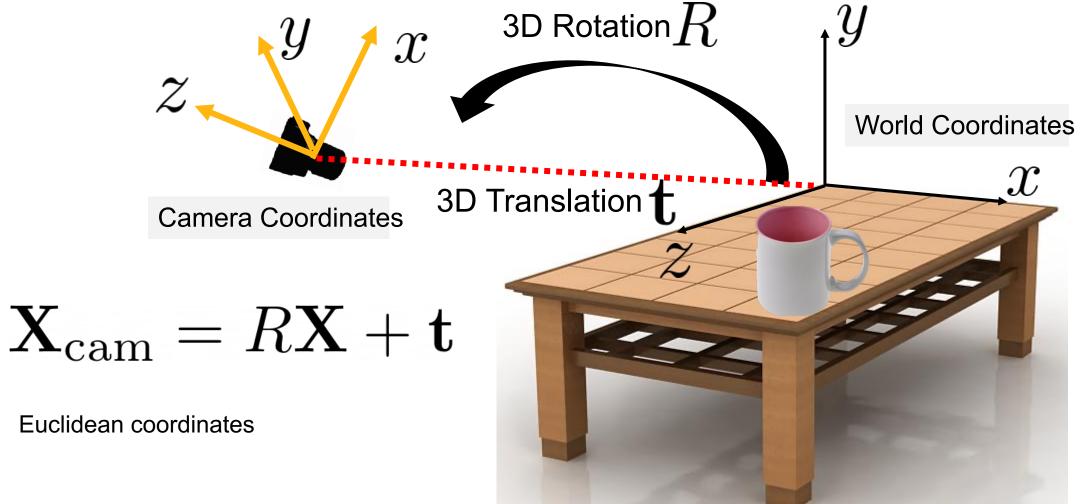
#### **Camera Intrinsics**

$$\begin{bmatrix} \alpha_x & -\alpha_x \cot(\theta) & x_0 & 0 \\ & \frac{\alpha_y}{\sin(\theta)} & y_0 & 0 \\ & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
Camera intrinsics
$$K = \begin{bmatrix} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & 1 \end{bmatrix} \mathbf{x} = K \begin{bmatrix} I | \mathbf{0} \end{bmatrix} \mathbf{X}_{\text{cam}}$$

$$K = \begin{bmatrix} \alpha_y & y_0 \\ & y_0 \end{bmatrix} \mathbf{x}_{3x1} = \frac{1}{3x3} \begin{bmatrix} I | \mathbf{0} \end{bmatrix} \mathbf{X}_{4x1}$$

Homogeneous coordinates

# Camera Extrinsics: Camera Rotation and Translation



#### **3D** Translation

#### **3D** Rotation

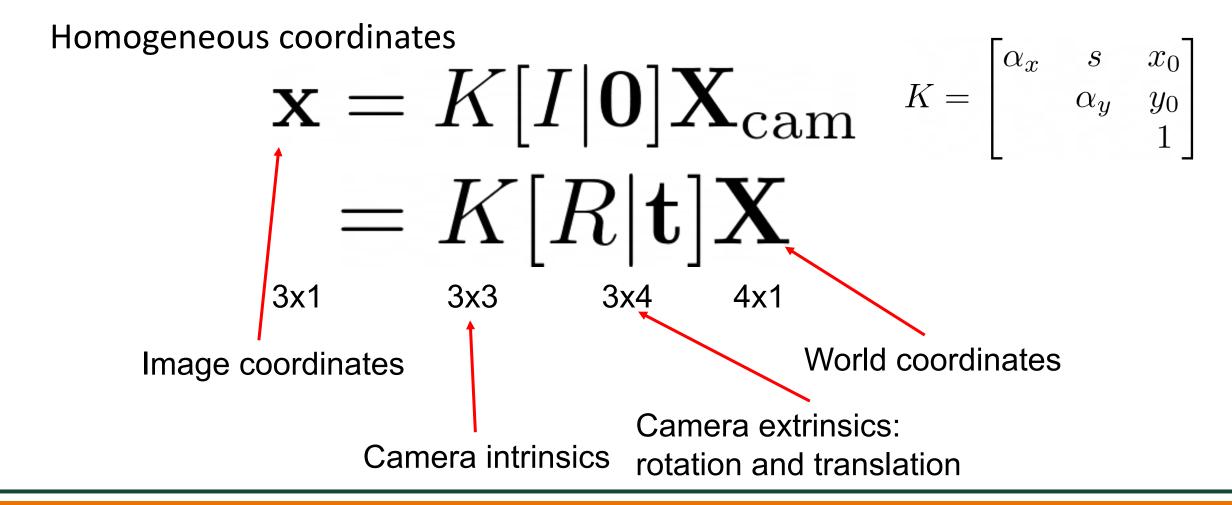
The yaw, pitch, and roll rotations can be combined sequentially to attain any possible 3D rotation.

$$R(\alpha, \beta, \gamma) = R_{y}(\alpha)R_{x}(\beta)R_{z}(\gamma)$$

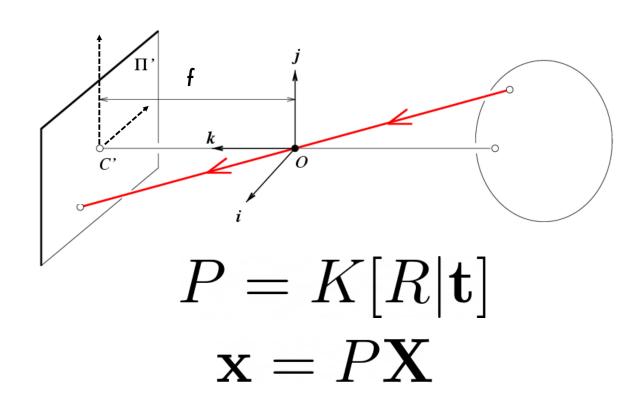
$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0\\ \sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{bmatrix} R_{x}(\beta) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos \beta & -\sin \beta\\ 0 & \sin \beta & \cos \beta \end{bmatrix} R_{y}(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha\\ 0 & 1 & 0\\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0\\ 0 & \sin \gamma & \cos \gamma & 0\\ 0 & \sin \beta & \cos \beta \end{bmatrix} R_{y}(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha\\ 0 & 1 & 0\\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

## Camera Projection Matrix $P = K[R|\mathbf{t}]$



#### Back-projection in World Coordinates



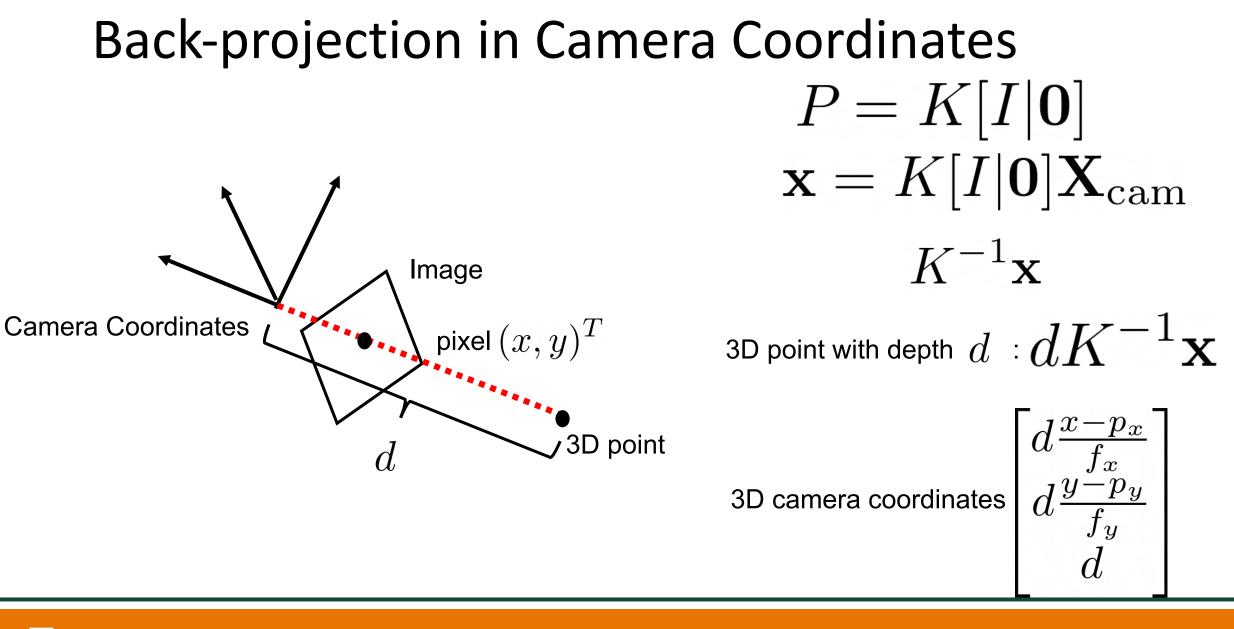
- The camera center O is on the ray
- $P^+\mathbf{x}$  is on the ray

$$P^+ = P^T (PP^T)^{-1}$$

Pseudo-inverse

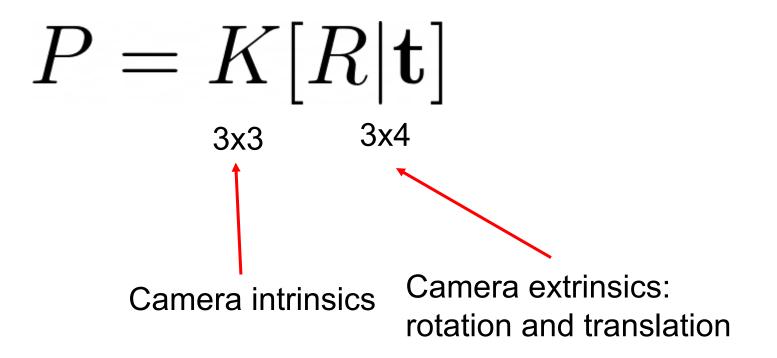
The ray can be written as  $P^+ \mathbf{x} + \lambda O$ 

• A pixel on the image backprojects to a ray in 3D

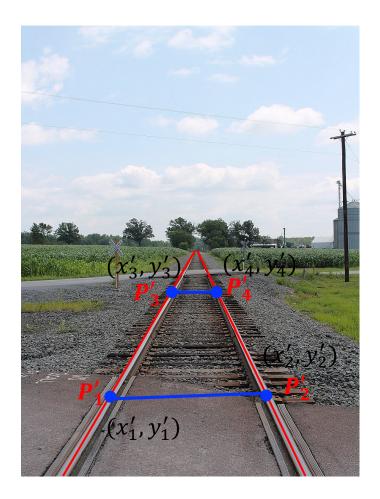


#### Summary: Camera Models

Camera projection matrix: intrinsics and extrinsics



#### **Interpreting Perceived Images**



The lengths of two lines  $P_1P_2$  and  $P_3P_4$  in 3D space are equal

$$\begin{array}{c} \text{3D} \\ P = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \stackrel{\text{2D}}{\longrightarrow} P' = \begin{bmatrix} x' \\ y' \end{bmatrix} \quad \begin{cases} x' = f \frac{x}{z} \\ y' = f \frac{y}{z} \end{cases}$$

Why is  $P'_{3}P'_{4}$  shorter than  $P'_{1}P'_{2}$  in the 2D image?

- For the two 3D points  $P_1$  and  $P_3$ , let's assume we have  $x_1 = x_3, y_1 = y_3$ , and  $z_1 < z_3$  in the 3D coordinate system
- After 3D-to-2D projection, we have  $x'_1 > x'_3$  and  $y'_1 > y'_3$
- Larger depth and shorter length due to the projection

#### **Further Reading**

Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, <u>Course Notes 1: Camera Models</u>

<u>Multiview Geometry in Computer Vision</u>, Richard Hartley and Andrew Zisserman, Chapter 6, Camera Models

Computer Vision: Algorithms and Applications. Richard Szeliski, Chapter 2.1.4, 3D to 2D projections