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Neural Radiance Fields (NeRF) as an approach to inverse rendering
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NeRF == Ditferentiable Rendering with
a Neural Volumetric Representation




Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
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Neural Volumetric Rendering



Rendering

qguerying the radiance value
along rays through 3D space

.

What color?




Volumetric

continuous, differentiable
rendering model without
concrete ray/surface intersections

N

Not a point cloud
either

It’s continuous voxels made of shiny transparent cubes



Neural

using a neural network as a
scene representation, rather

than a voxel grid of data
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NeRF: Representing
Scenes as Neural Radiance

Fields for View Synthesis
ECCV 2020

Ben Mildenhall* Pratul Srinivasan®* Matt Tancik* Jon Barron Ravi Ramamoorthi Ren Ng
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Optimize a NeRF
model

Given a set of sparse views of an 3D reconstruction viewable
object with known camera poses from any angle



NeRF Overview

> Volumetric rendering

> Neural networks as representations for spatial data

> Neural Radiance Fields (NeRF)



NeRF Overview

> Volumetric rendering



S.Chandrasekhar

soeve— Traditional volumetric rendering
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> Theory of volume rendering co-opted from physics in the
1980s: absorption, emission, out-scattering/in-scattering

Ray tracing simulated cumulus cloud [Kajiya]

Chandrasekhar 1950, Radiative Transfer
Kajiya 1984, Ray Tracing Volume Densities



Traditional volumetric rendering

Pt.Reyes = Foreground over Hillside over Background.

Alpha compositing [Porter and Duff]

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering
Porter and Duff 1984, Compositing Digital Images

> Adapted for visualising medical data and linked with
alpha compositing



Traditional volumetric rendering

> Modern path tracers use sophisticated Monte Carlo
methods to render volumetric effects

Physically-based Monte Carlo renderi [Nk et al]

Novak et al 2018, Monte Carlo methods for physically based volume rendering



Volumetric formulation for NeRF

Scene is a cloud of colored fog

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



Volumetric formulation for NeRF

Ray r(t) = o + td

3

Camera Consider a ray traveling through the scene, and a point

at distance t along this ray. We look up its color ¢(t),
and its opacity (alpha value) a(t)



Volumetric formulation for NeRF

P|no hits before t| = T(t)

But ¢ may also be blocked by earlier points along the

ray. T (t): probability that the ray didn't hit any particles
earlier.
T(t) is called "transmittance”



Volume rendering estimation: integrating color along a
ray

Rendering model for ray r(t) = o + td:

/ Z lia;c; . /
final rendered \
color along ray weights

colors

How much light is blocked earlier along ray:

i—1 tl/ . 3D volume
p— 1 — J '
FLE 7

Camera

Computing the color for a
set of rays through the
pixels of an image yields
a rendered image




Volume rendering estimation: integrating color along a
ray

3D volume

Slight modification: a is not directly stored in the volume,
but instead is derived from a stored volume density
sigma (o) that I1s multiplied by the distance between
samples delta (0):

a; =1 —exp(—0;0;)

Camera



Volume rendering estimation: integrating color along a
ray

3D volume
tl/ |

/ How do we store the values of

C, 0 at each point in space?

Camera



NeRF Overview

> Neural networks as representations for spatial data



Toy problem: storing 2D image data

(r,9,b)

Usually we store an image as a
2D grid of RGB color values



Toy problem: storing 2D image data

Fo
(x,7) —»III—» (r, g, b)

What if we train a simple fully-connected
network (MLP) to do this instead?



Naive approach fails!

Ground truth image Neural network output fit
with gradient descent



Problem:

“Standard” coordinate-based MLPs cannot represent
high frequency functions



Solution:

Pass input coordinates through a
high frequency mapping first



Example mapping: “positional encoding”

Sin(v),cos V)
sin(2v), cos(2v)
sin(4v), cos(4v) _>III_> y

sin(2%7'v), cos(2" v



Positional encoding

Raw encoding of a number x

"Positional encoding” of a number x

31



Problem solved!

Ground truth image Neural network output without Neural network output with
high frequency mapping high frequency mapping



NeRF Overview

> Neural Radiance Fields (NeRF)



NeRF = volume rendering +
coordinate-based network



How do we store the values of ¢, o at each point in space

MLP
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How do we store the values of ¢, o at each point in space
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How do we store the values of ¢, o at each point in space

Positional
enccding
I~
-



How do we store the values of ¢, o at each point in space

enccding
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How do we store the values of ¢, o at each point in space
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How do we store the values of ¢, o at each point in space

Positional
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How do we store the values of ¢, o at each point in space

:

Positional
enccding




How do we store the values of ¢, o at each point in space
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Extension: view-dependent field

MLP

encoding
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Include the ray direction In
the input to the MLP -
allows for capturing and

rendering view-dependent

effects (e.g., shiny surfaces)




Putting 1t all together

» Continuous neural networks as a view-dependent volumetric scene representation

(position x + view direction d)
* Using volumetric rendering to synthesize new views
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Train network using gradient descent
to reproduce all input views of scene

Volume rendering of  Ground truth
MLP colors/densities Image

|-




Results






NeRF encodes convincing view-dependent effects using
directional dependence
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NeRF encodes detailed scene geometry with occlusion effects




NeRF encodes detailed scene geometry with occlusion effects




NeRF encodes detailed scene geometry




Summary

» Represent the scene as volumetric colored “fog”

» Store the fog color and density at each point as an MLP
mapping 3D position (X, y, z) to color ¢ and density o

» Render image by shooting a ray through the fog for each
pixel

* Optimize MLP parameters by rendering to a set of known
viewpoints and comparing to ground truth images



It has been three years

* Original NeRF paper: 2750 citations in 3 years

53



Handling Appearance Changes

!! | w

54
Nerf-W [Martin-Brualla et al. CVPR 2021]



Real-time Rendering

Video from PlenOctrees [Yu et al. CVPR 2021]



Dynamic NeRFs

Nerfies [Park et al., ICCV 2021] HyperNeRF [Park et al., SigAsia 2021]

Input video

5

SRt

Fixed Time, View Interpolation Fixed View, Time Interpolation

%

| NSFF [Li et al., CVPR 2021]
[Xian et al., CVPR 2021] 54



City-Scale
NeRFs

BlockNeRF [Tancik et al.
CVPR 2022]




RawNeRF [Mildenhall et
al. CVPR 202%



Input RGB

Robotics

Descriptors

NeRF-Supervision: Learning Dense Object Descriptors from Neural Radiance Fields, [Yen-Chen et al. ICRA
2022]
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Dex-NeRF: Using a Neural Radiance field to Grasp Transparent Objects, [Ichnowski and

Avigal et al. CoRL 2021] Vision-Only Robot Navigation in a Neural Radiance World 59

[Adamkiewicz and Chen et al. ICRA 2022]



Generating 3D
scenes with
diffusion models

DreamFusion [Poole et
al. ICLR 2023]




Beyond Visual

Camera Trajectory

Camera Trajectory

Render Video w/
Input Videos Binaural Audio

Given the position (x,y,z) and viewing direction (6,¢) of a listener,
our method can render an image the listener would see and the
corresponding binaural audio the listener would hear.

AV-NeRF [Liang et al. ArXiv 2023]



Reading List & Implementation

o https://github.com/awesome-NeRF/awesome-NeRF

e https://sites.google.com/berkeley.edu/nerf-tutorial/home
e https://docs.nerf.studio/en/latest

62


https://github.com/awesome-NeRF/awesome-NeRF
https://sites.google.com/berkeley.edu/nerf-tutorial/home
https://docs.nerf.studio/en/latest/

