# 3D Reconstruction 

CS 6384 Computer Vision
Professor Yapeng Tian
Department of Computer Science

A lot of slides borrowed from Prof. Yu Xiang and Prof. Andreas Geiger

## 3D Reconstruction

How to obtain 3D models of objects or scenes?

- Stereo matching
- SfM and SLAM
-3D scanning
- Multi-view stereo
-3D from a single 2D



## Triangulation-based 3D Scanner



## Triangulation-based 3D Scanner

Digital Michelangelo Project (1990)


## Microsoft Kinect 1

Structured light infrared (IR)


IR stereo

infrared (IR) speckle pattern

## Microsoft Kinect 2 and Azure

## Time-of-flight infrared (IR)

The value of pixels in the clean IR reading is proportional to the amount of light returned from the scene.


Depth Image
IR Image
https://docs.microsoft.com/en-us/azure/kinect-dk/depth-camera

## Range Data Merging

Each scan/capture generates a depth image or a point cloud

How can we combine these data into a 3D model?

- Alignment/registration
- E.g., iterative closest point (ICP) algorithm
- Merging

http://www.open3d.org/docs/latest/tutorial/Basic/icp registration.html


## Volumetric Integration



A Volumetric Method for Building Complex Models from Range Images. Curless \& Levoy. SIGGRAPH'96.

## Volumetric Integration

## Signed Distance Function (SDF)

$\phi: \Omega \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R} \quad$ Signed distance to the closest object boundary


## Volumetric Integration

## Signed Distance Function (SDF)



## Volumetric Integration



SDF for the range image

$$
D_{i+1}(\mathbf{x})=\frac{W_{i}(\mathbf{x}) D_{i}(\mathbf{x})+w_{i+1}(\mathbf{x}) d_{i+1}(\mathbf{x})}{W_{i}(\mathbf{x})+w_{i+1}(\mathbf{x})}
$$

$$
W_{i+1}(\mathbf{x})=W_{i}(\mathbf{x})+w_{i+1}(\mathbf{x})
$$



Weight function

A Volumetric Method for Building Complex Models from Range Images. Curless \& Levoy. SIGGRAPH'96.

## Volumetric Integration



A Volumetric Method for Building Complex Models from Range Images. Curless \& Levoy. SIGGRAPH'96.

## KinectFusion



Single scan


Rendered normal map


Rendered 3D model

## Image-based 3D Reconstruction



## Image-based 3D Reconstruction Pipeline



Humans recognize 3D from a single 2D image



## 3D Reconstruction from a 2D Image



Input Images


Neural Network


3D Reconstruction

## What is a good output 3D representation?

## 3D Representations

## Voxels:

- Discretization of 3D space into grid
- Easy to process with neural networks
- Cubic memory $\mathrm{O}\left(\mathrm{n}^{3}\right) \Rightarrow$ limited resolution



## 3D Representations

## Points

- Discretization of surface into 3D points
- Does not model connectivity / topology
- Limited number of points

- Global shape description

[Fan et al., CVPR 2017]


## 3D Representations

## Meshes

- Discretization into vertices and faces
- Limited number of vertices / granularity
- Requires class-specific template - or -
- Leads to self-intersections


[Groueix et al., CVPR 2018]


## 3D Representations

Implicit 3D representation

- Implicit representation $\Rightarrow$ No discretization
- Arbitrary topology \& resolution
- Low memory footprint
- Not restricted to specific class


## Occupancy Network for 3D Reconstruction

## Key idea

- Do not represent 3D shape explicitly
- Instead, consider surface implicitly as decision boundary of a non-linear classifier:



## Occupancy Network for 3D Reconstruction

## Training

$$
\mathcal{L}_{\mathcal{B}}(\theta)=\frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \sum_{j=1}^{K} \mathcal{L}\left(f_{\theta}\left(p_{i j}, x_{i}\right), o_{i j}\right)
$$

## Occupancy Network for 3D Reconstruction



Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR'19


Ineut
Fan at al [2017]

## Summary

- 3D scanning and Multiview stereo pipeline
- Explicit 3D representations
- Voxels, points, meshes
- Implicit 3D representations
- Learn a function to represent the 3D shape (occupancy, SDFs, radiance fields)


## Further Reading

- Chapter 13, Computer Vision, Richard Szeliski
- A Volumetric Method for Building Complex Models from Range Images. Curless \& Levoy. SIGGRAPH'96.
- Multi-View Stereo: A Tutorial. Yasutaka Furukawa and Carlos Hernández, 2015
- Occupancy Network https://arxiv.org/abs/1812.03828
- DeepSDF https://arxiv.org/abs/1901.05103

