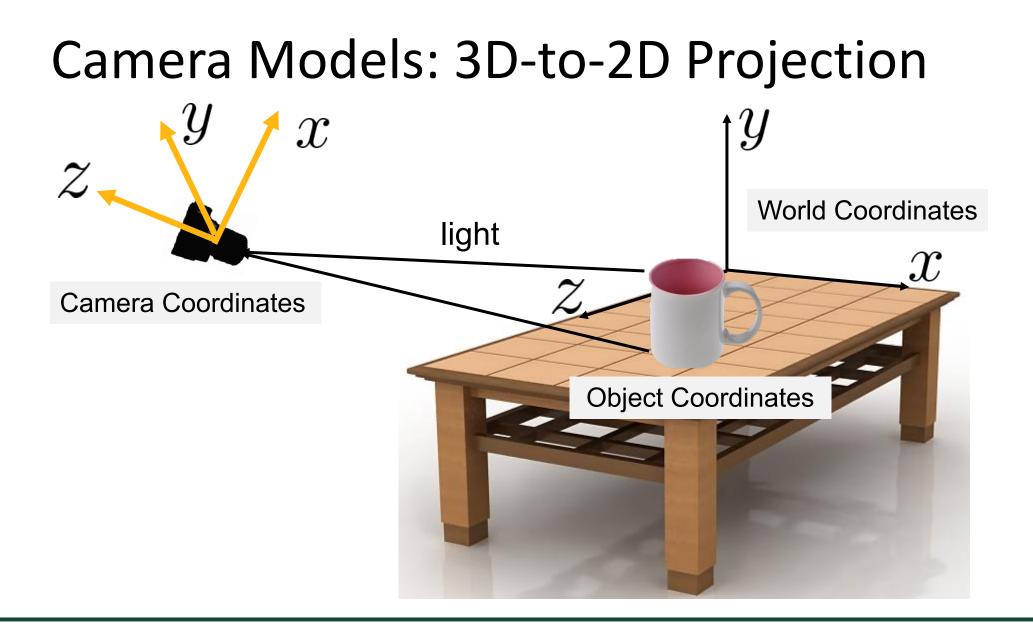


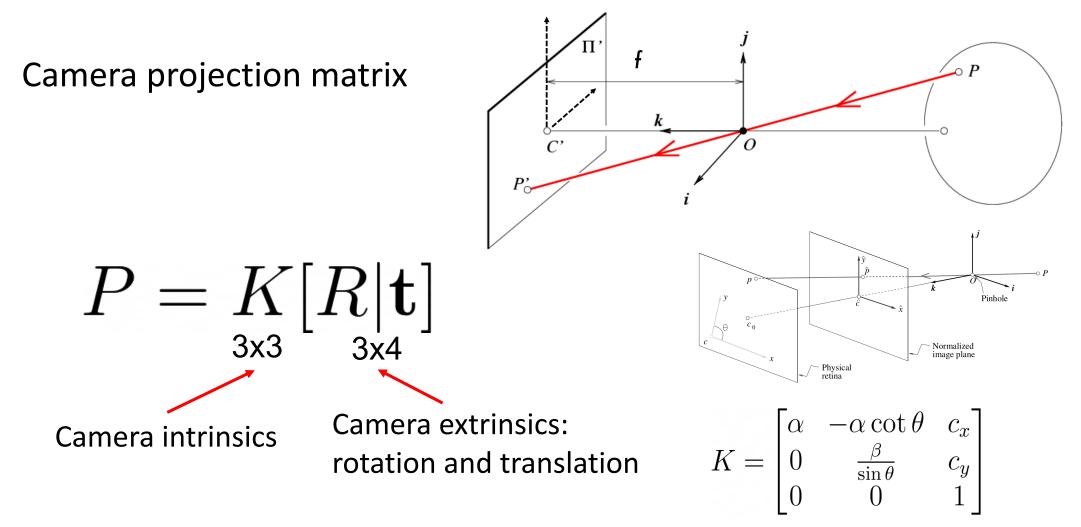
Camera Calibration and Pose Estimation

CS 6384 Computer Vision Professor Yapeng Tian Department of Computer Science

Slides borrowed from Professor Yu Xiang

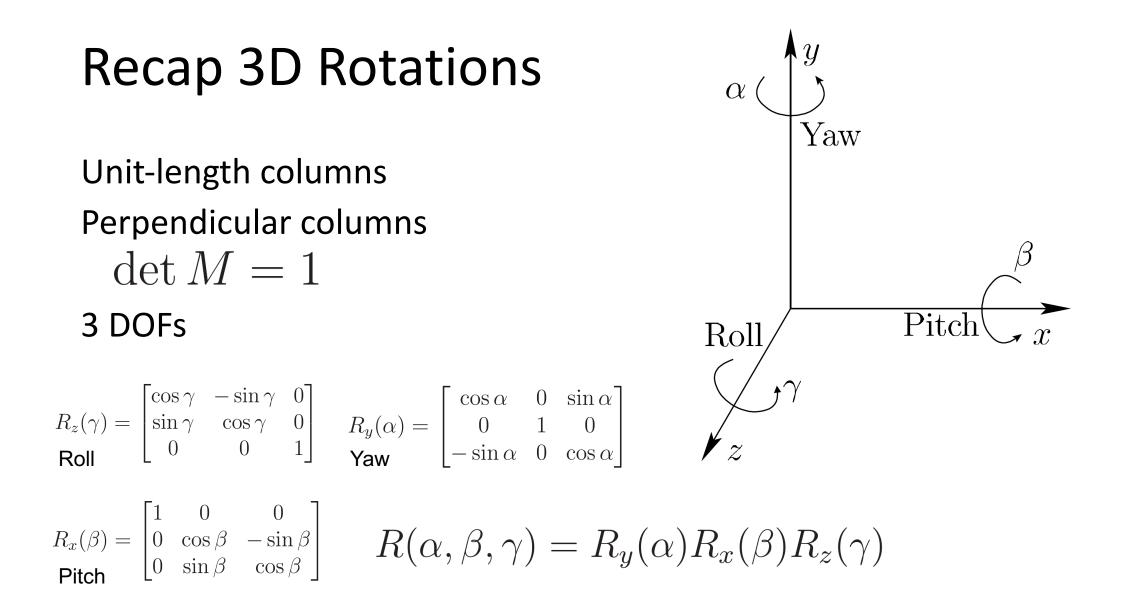


Recap Camera Models



ID THE UNIVERSITY OF TEXAS AT DALLAS

Recap 3D Translation



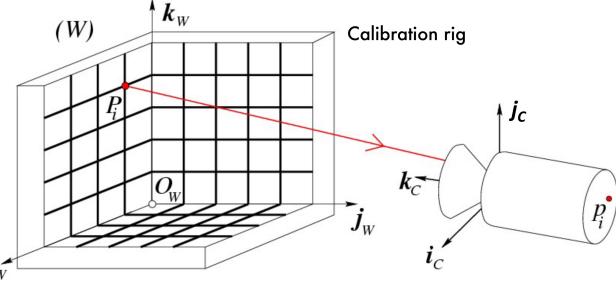
Estimate the camera intrinsics and camera extrinsics $\ P = K[R|\mathbf{t}]$

Why is this useful?

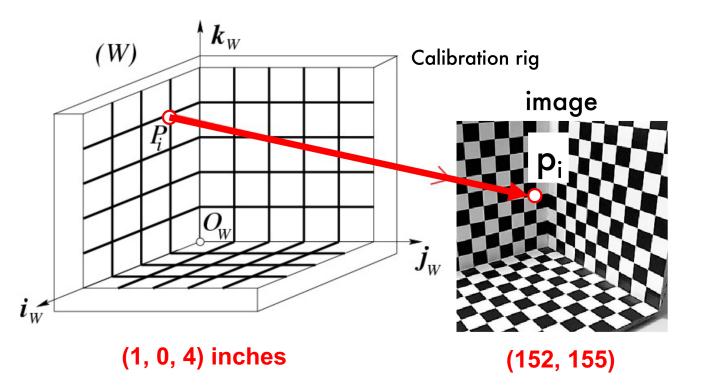
- If we know K and depth, we can compute 3D points in camera frame
- In stereo matching to compute depth, we need to know focal length
- Camera pose tracking is critical in SLAM (Simultaneous Localization and Mapping)

Estimate the camera intrinsics and camera extrinsics $P = K[R|\mathbf{t}]$

Idea: using images from the camera with a known world coordinate frame $k_{k_{m}}$



checkerboard



Unknowns

Camera intrinsics K

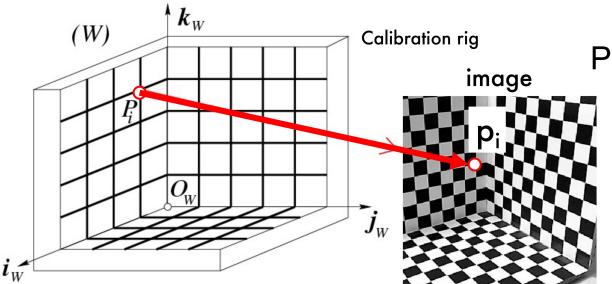
Camera extrinsics: R,T rotation and translation

Knowns

World coordinates P_1, \ldots, P_n

Pixel coordinates p_1, \ldots, p_n

$$K = \begin{bmatrix} \alpha & -\alpha \cot \theta & c_x \\ 0 & \frac{\beta}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix}$$



 $p_i = MP_i = K[R|T]P_i$

Pixel coordinate 3x4

World coordinate

- How many unknowns in M?
 - 11
- How many correspondences do we need to estimate M?
 - We need 11 equations
 - 6 correspondences
- More correspondences are better

$$p_i = MP_i = K[R|T]P_i$$

$$M = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} \begin{array}{c} 1 \times 4 \\ 1 \times 4 \\ 1 \times 4 \end{array} \quad MP_i = \begin{bmatrix} \mathbf{m}_1 P_i \\ \mathbf{m}_2 P_i \\ \mathbf{m}_3 P_i \end{bmatrix} \quad p_i = \begin{bmatrix} u_i \\ v_i \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{m}_1 P_i}{\mathbf{m}_3 P_i} \\ \frac{\mathbf{m}_2 P_i}{\mathbf{m}_3 P_i} \end{bmatrix}$$

A pair of equations
$$\begin{aligned} u_i(m_3P_i) - m_1P_i &= 0\\ v_i(m_3P_i) - m_2P_i &= 0 \end{aligned}$$

THE UNIVERSITY OF TEXAS AT DALLAS

Given n correspondences $p_i = \begin{bmatrix} u_i \\ v_i \end{bmatrix} \leftrightarrow P_i$

$$u_1(m_3P_1) - m_1P_1 = 0$$
$$v_1(m_3P_1) - m_2P_1 = 0$$

٠

2n equations

:
$$u_n(m_3P_n) - m_1P_n = 0$$
$$v_n(m_3P_n) - m_2P_n = 0$$

$$\begin{bmatrix} P_1^T & 0^T & -u_1 P_1^T \\ 0^T & P_1^T & -v_1 P_1^T \\ \vdots & & \\ P_n^T & 0^T & -u_n P_n^T \\ 0^T & P_n^T & -v_n P_n^T \end{bmatrix} \begin{bmatrix} m_1^T \\ m_2^T \\ m_3^T \end{bmatrix} = \mathbf{P}m = 0$$

$$2n \times 12 \qquad 12 \times 1$$

How to solve this linear system?

Linear System $\mathbf{P}m=0$ 2n imes12 12 imes1

- Find non-zero solutions
- If m is a solution, k×m is also a solution for $k \in \mathcal{R}$
- We can seek a solution $\|m\| = 1$

$$\label{eq:subject} \begin{split} \min \|\mathbf{P}m\| & \text{Solution: } P = UDV^T \quad \text{SVD decomposition of P} \\ \text{Subject to } \|m\| = 1 \quad \begin{aligned} & \text{Solution: } P = UDV^T \quad \text{SVD decomposition of P} \\ & 2n \times 12 \quad 12 \times 12 \quad 12 \times 12 \\ & \text{m is the last column of V} \\ \end{aligned}$$

the eigenvector of $P^T P$ corresponding to the smallest eigenvalue 12

$$p_i = MP_i = K[R|T]P_i$$

How to extract K, R and T from M?

$$K = \begin{bmatrix} \alpha & -\alpha \cot \theta & c_x \\ 0 & \frac{\beta}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} \mathbf{r}_1^{\mathrm{T}} \\ \mathbf{r}_2^{\mathrm{T}} \\ \mathbf{r}_3^{\mathrm{T}} \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} \mathbf{t}_x \\ \mathbf{t}_y \\ \mathbf{t}_z \end{bmatrix}$$

$$\mathbf{3 \text{ rows}}$$

 $\mathbf{P}m = 0$

m is the last column of V

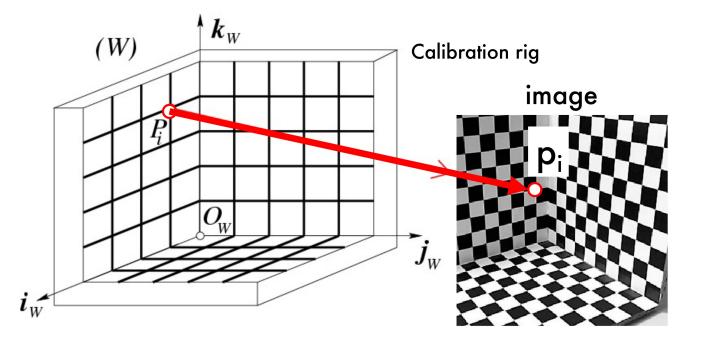
$$m o M$$
 . Up to scale

$$\rho M = \begin{bmatrix} \alpha r_1^T - \alpha \cot \theta r_2^T + c_x r_3^T & \alpha t_x - \alpha \cot \theta t_y + c_x t_z \\ \frac{\beta}{\sin \theta} r_2^T + c_y r_3^T & \frac{\beta}{\sin \theta} t_y + c_y t_z \\ r_3^T & t_z \end{bmatrix}$$
Scale

$$M = \frac{1}{\rho} \begin{bmatrix} \alpha r_1^T - \alpha \cot \theta r_2^T + c_x r_3^T & \alpha t_x - \alpha \cot \theta t_y + c_x t_z \\ \frac{\beta}{\sin \theta} r_2^T + c_y r_3^T & \frac{\beta}{\sin \theta} t_y + c_y t_z \\ r_3^T & t_z \end{bmatrix} = \begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} a_1^T \\ a_2^T \\ a_3^T \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

The rows of a rotation matrix are unit-length, perpendicular to each other

Intrinsics
$$\rho = \pm \frac{1}{\|a_3\|}$$
Extrinsics $K = \begin{bmatrix} \alpha & -\alpha \cot \theta & c_x \\ 0 & \frac{\beta}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix}$ $c_x = \rho^2 (a_1 \cdot a_3)$ $r_1 = \frac{a_2 \times a_3}{\|a_2 \times a_3\|}$ $K = \begin{bmatrix} \alpha & -\alpha \cot \theta & c_x \\ 0 & \frac{\beta}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix}$ $\theta = \cos^{-1} \left(-\frac{(a_1 \times a_3) \cdot (a_2 \times a_3)}{\|a_1 \times a_3\| \cdot \|a_2 \times a_3\|} \right)$ $r_2 = r_3 \times r_1$ FP, Computer Vision: A
Modern Approach, Sec. 1.3 $\alpha = \rho^2 \|a_1 \times a_3\| \sin \theta$ $r_3 = \rho a_3$

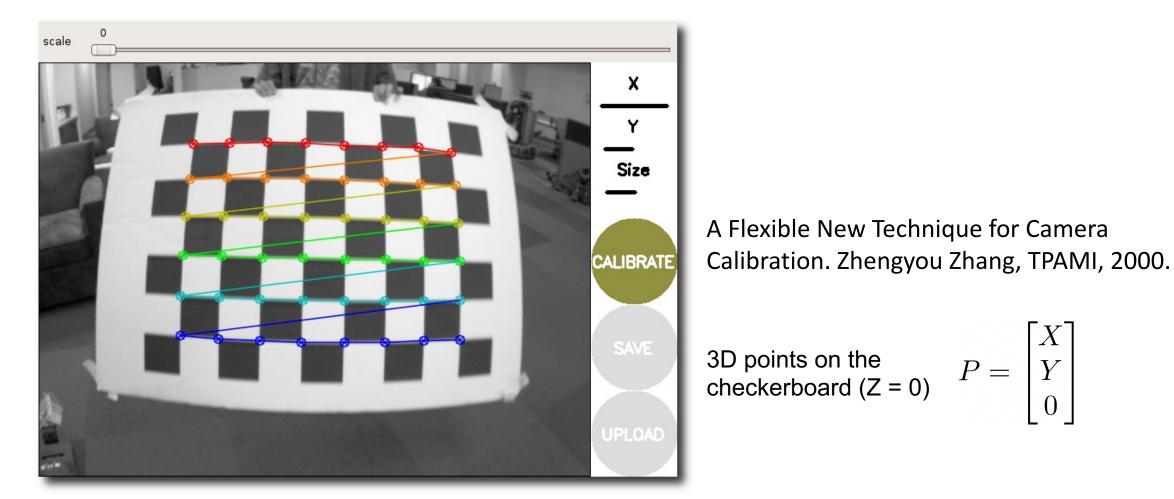


 $\mathbf{P}m = 0$

All 3D points should **NOT** be on the same plane. Otherwise, no solution

FP, Computer Vision: A Modern Approach, Sec. 1.3

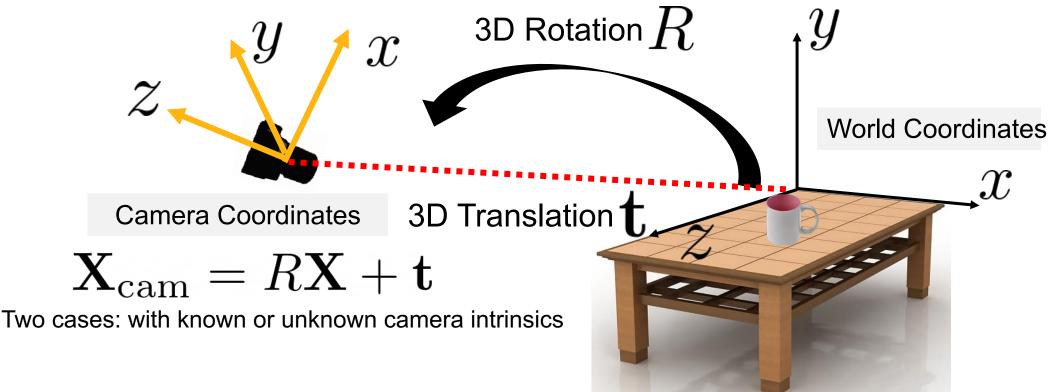
Camera Calibration with a 2D Plane



http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

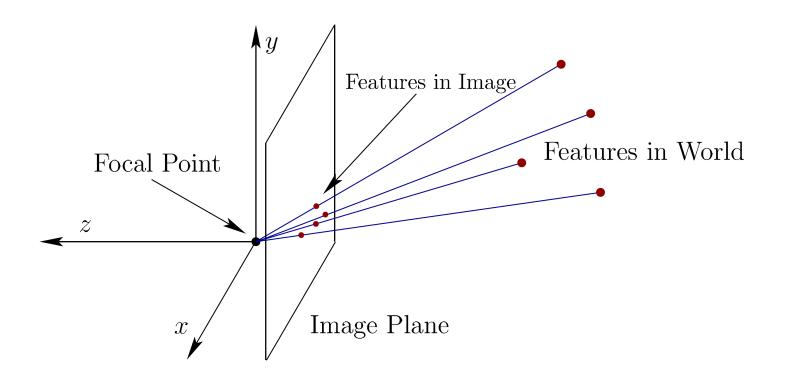
Camera Pose Estimation

Estimate the **3D** rotation and **3D** translation of a camera with respect to some world coordinate frame



Camera Pose Estimation

Using visibility of features in the real world

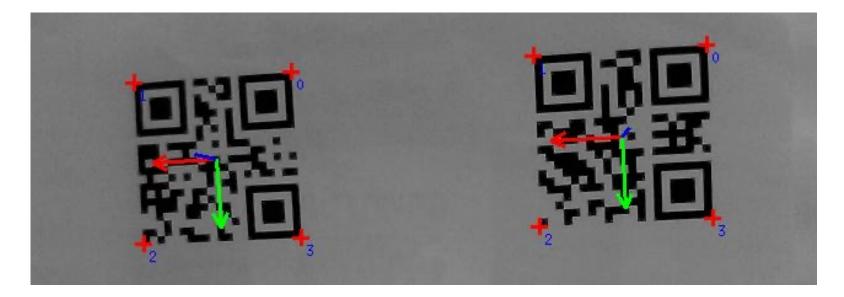


- Natural Features
 - No setup cost
 - A difficult problem
- Artificial features
 - Print a special tag

QR code

QR Code for Pose Estimation

Using the 4 corners of a QR code as features



https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-pose-estimation-qrcode.html

The Perspective-n-Point (PnP) Problem

Given/known variables

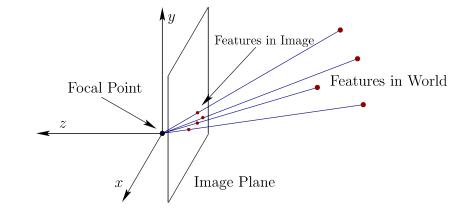
- A set of n 3D points in the world coordinates p_w
- Their projections (2D coordinates) on an image p_c
- ullet Camera intrinsics K

Unknown variables

- 3D rotation of the camera with respective to the world coordinates R
- ullet 3D translation of the camera T

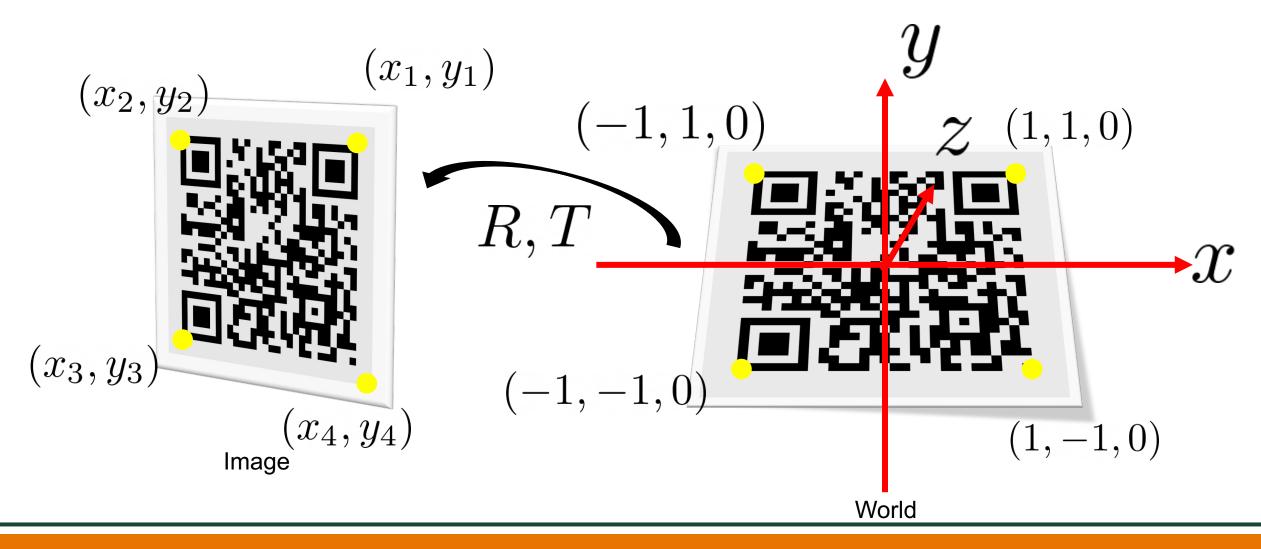
$$s p_{c} = K \begin{bmatrix} R \mid T \end{bmatrix} p_{w}$$

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_{x} & \gamma & u_{0} \\ 0 & f_{y} & v_{0} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
Unknown



-

The PnP Problem with QR Code

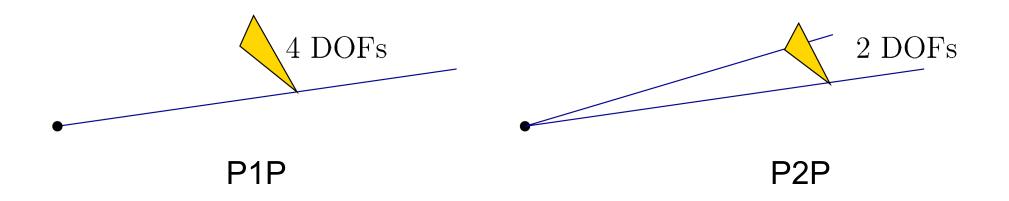


The Perspective-n-Point (PnP) Problem

6 degrees of freedom (DOFs)

• 3 DOF rotation, 3 DOF translation

Each feature that is visible eliminates 2 DOFs



The PnP Problem

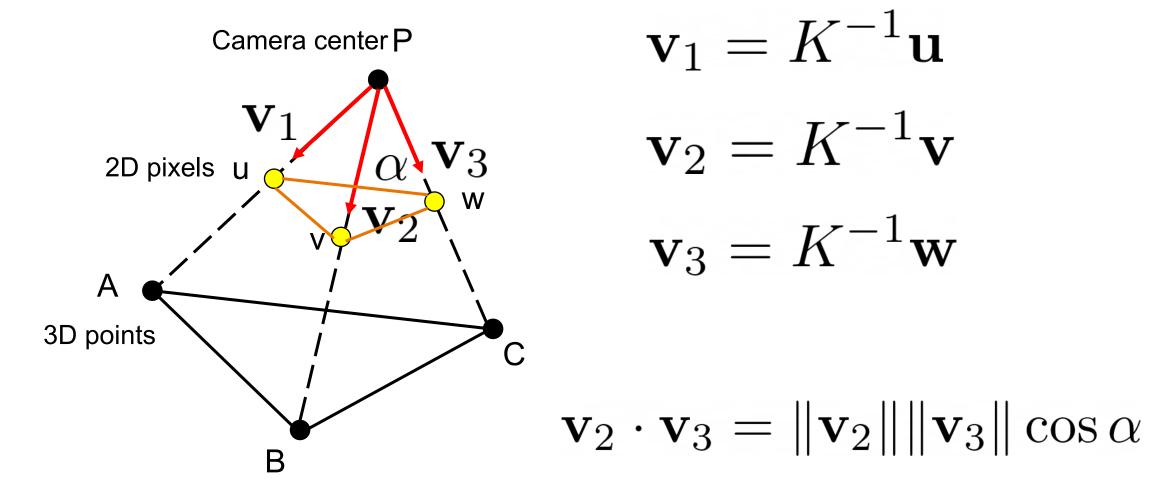
Many different algorithms to solve the PnP problem

General idea

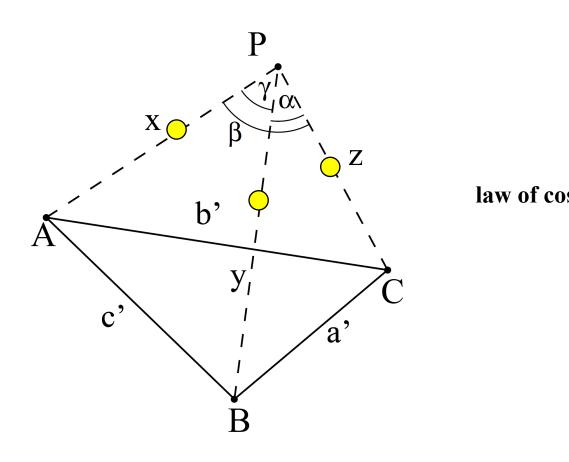
- Retrieve the coordinates of the 3D points in the camera coordinate system \mathbf{p}_i^c
- Compute rotation and translation that align the world coordinates and the camera coordinates

$$\mathbf{p}_i^w \stackrel{R,T}{\longrightarrow} \mathbf{p}_i^c$$

P3P

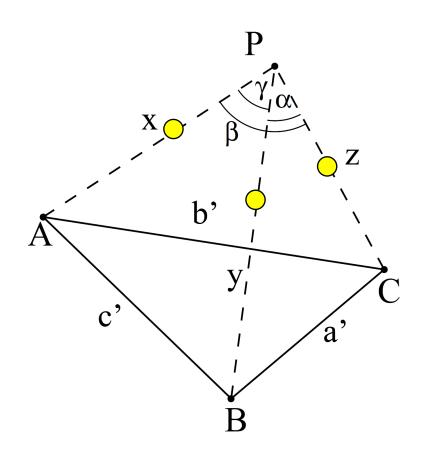


P3P



X	= PA Y =	PB	Z = PC
De	epths of the 3 pixe	els	
X	,Y,Z are the	unknow	ns
	$\int Y^2 + Z^2 - Y$	Zp - c	$a'^2 = 0$
osines <	$\begin{cases} Y^2 + Z^2 - Y \\ Z^2 + X^2 - Z \\ X^2 + Y^2 - X \end{cases}$	XZq -	$b'^2 = 0$
	$\left(X^2 + Y^2 - X \right)$	XYr -	$c'^2 = 0.$
	$p = 2\cos\alpha$	a' =	BC
	$q = 2\cos\beta$	b' =	AC
	$r = 2\cos\gamma$	c' =	AB

P3P



- Find the solutions for X, Y, Z (depth of the 3 pixels)
- Obtain the coordinates of A, B, C in camera frame, e.g., $dK^{-1}u$ for A
- Compute R and T using the coordinates of A, B, C in camera frame and in world frame

Rotation and Translation from Two Point Sets

$$\mathbf{p}_i^w \stackrel{R,T}{\longrightarrow} \mathbf{p}_i^c$$

Closed-form solution

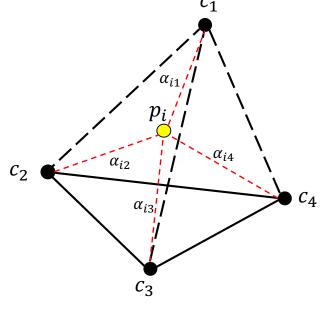
K.S. Arun, T.S. Huang, and S.D. Blostein. Least-Squares Fitting of Two 3-D Points Sets. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 9(5):698–700, 1987.

$$\Sigma^{2} = \sum_{i=1}^{N} \|p_{i}^{c} - (Rp_{i}^{w} + T)\|^{2}$$

Or https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf

EPnP: uses 4 control points $\mathbf{c}_j, \quad j = 1, \dots, 4$

3D coordinates in the world frame $\mathbf{p}_{i}^{w} = \sum_{j=1}^{4} \alpha_{ij} \mathbf{c}_{j}^{w}$ Known Weights $\sum_{j=1}^{4} \alpha_{ij} = 1$ Known 3D coordinates in the camera frame $\mathbf{p}_{i}^{c} = \sum_{j=1}^{4} \alpha_{ij} \mathbf{c}_{j}^{c}$ Unknown



Projection of the points in the camera frame

$$\forall i , w_i \begin{bmatrix} \mathbf{u}_i \\ 1 \end{bmatrix} = K \mathbf{p}_i^c = K \sum_{j=1}^4 \alpha_{ij} \mathbf{c}_j^c$$
$$\forall i , w_i \begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} = \begin{bmatrix} f_u & 0 & u_c \\ 0 & f_v & v_c \\ 0 & 0 & 1 \end{bmatrix} \sum_{j=1}^4 \alpha_{ij} \begin{bmatrix} x_j^c \\ y_j^c \\ z_j^c \end{bmatrix}$$

Unknown $\left\{ (x_j^c, y_j^c, z_j^c) \right\}_{j=1,...,4} \{w_i\}_{i=1,...,n}$ $w_i = \sum_{j=1}^4 \alpha_{ij} z_j^c$

$$\forall i, w_i \begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} = \begin{bmatrix} f_u & 0 & u_c \\ 0 & f_v & v_c \\ 0 & 0 & 1 \end{bmatrix} \sum_{j=1}^4 \alpha_{ij} \begin{bmatrix} x_j^c \\ y_j^c \\ z_j^c \end{bmatrix}$$
$$w_i = \sum_{j=1}^4 \alpha_{ij} z_j^c$$

$$\sum_{j=1}^{4} \alpha_{ij} f_u x_j^c + \alpha_{ij} (u_c - u_i) z_j^c = 0$$
$$\sum_{j=1}^{4} \alpha_{ij} f_v y_j^c + \alpha_{ij} (v_c - v_i) z_j^c = 0$$

Unknown
$$\left\{(x_j^c, y_j^c, z_j^c)
ight\}_{j=1,\dots,4}$$

 $\mathbf{M}\mathbf{x} = \mathbf{0} \qquad \qquad \mathbf{x} = \begin{bmatrix} \mathbf{c}_1^{c^{\top}}, \mathbf{c}_2^{c^{\top}}, \mathbf{c}_3^{c^{\top}}, \mathbf{c}_4^{c^{\top}} \end{bmatrix}^{\top} 12 \times 1$

M is a $2n \times 12$ matrix

Solve $\mathbf{M}\mathbf{x} = \mathbf{0}$ to obtain $\mathbf{x} = \begin{bmatrix} \mathbf{c}_1^{c\, op}, \mathbf{c}_2^{c\, op}, \mathbf{c}_3^{c\, op}, \mathbf{c}_4^{c\, op} \end{bmatrix}^{ op}$ See. Lepetit et al., IJCV'09

Compute 3D coordinates in camera frame $\mathbf{p}_i^c = \sum_{j=1}^{3} \alpha_{ij} \mathbf{c}_j^c$ We know the 3D coordinates in world frame $\mathbf{p}_i^w = \sum_{j=1}^{4} \alpha_{ij} \mathbf{c}_j^w$

Compute R and T using the two sets of 3D coordinates $\mathbf{p}_{i}^{w} \xrightarrow{R,T} \mathbf{p}_{i}^{c}$ EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV'09.

PnP in practice

SolvePnPMethod in OpenCV

SolvePnPMethod

enum cv::SolvePnPMethod

#include <opencv2/calib3d.hpp>

Enumerator	
SOLVEPNP_ITERATIVE Python: cv.SOLVEPNP_ITERATIVE	
SOLVEPNP_EPNP Python: cv.SOLVEPNP_EPNP	EPnP: Efficient Perspective-n-Point Camera Pose Estimation [125].
SOLVEPNP_P3P Python: cv.SOLVEPNP_P3P	Complete Solution Classification for the Perspective-Three-Point Problem [80].
SOLVEPNP_DLS Python: cv.SOLVEPNP_DLS	Broken implementation. Using this flag will fallback to EPnP. A Direct Least-Squares (DLS) Method for PnP [101]
SOLVEPNP_UPNP Python: cv.SOLVEPNP_UPNP	Broken implementation. Using this flag will fallback to EPnP. Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation [169]
SOLVEPNP_AP3P Python: cv.SOLVEPNP_AP3P	An Efficient Algebraic Solution to the Perspective-Three-Point Problem [114].
SOLVEPNP_IPPE Python: cv.SOLVEPNP_IPPE	Infinitesimal Plane-Based Pose Estimation [46] Object points must be coplanar.
SOLVEPNP_IPPE_SQUARE Python: cv.SOLVEPNP_IPPE_SQUARE	Infinitesimal Plane-Based Pose Estimation [46] This is a special case suitable for marker pose estimation. 4 coplanar object points must be defined in the following order: • point 0: [-squareLength / 2, squareLength / 2, 0] • point 1: [squareLength / 2, -squareLength / 2, 0] • point 2: [squareLength / 2, -squareLength / 2, 0] • point 3: [-squareLength / 2, -squareLength / 2, 0]
SOLVEPNP_SQPNP Python: cv.SOLVEPNP_SQPNP	SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem [208].

QR Code Pose Tracking Example

https://levelup.gitconnected.com/qr-code-scanner-in-kotlin-e15dd9bfbb1f

Further Reading

Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 3 <u>https://web.stanford.edu/class/cs231a/syllabus.html</u>

FP, Computer Vision: A Modern Approach, Sec. 1.3

A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI. 2000.