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Motion Perception

Separate moving figure from a stationary background

Motion for 3D perception
 Look at a fruit by rotating it around

Guide actions
* Walking down the street or hammering a nail

ﬁl- THE UNIVERSITY OF TEXAS AT DALLAS



Object Motion vs. Eye Movement

» Saccadic suppression: the brain
selectively block visual processing
during eye movements, suppress
motion detectors in the second case

* Proprioception: the body’s ability to
estimation its own motions due to
motor commands (i.e., use of eye
muscles)

* Information is provided by large-
scale motion: if the entire scene is

N~ moving, the brain interprets the user
(a) (b) must be moving

Two motions that cause equivalent movement of the image on the retina
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Motion from Object/Camera Movement in Videos
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Optical Flow

The pattern of apparent motion of objects, surfaces and edges in a
visual scene caused by the relative motion between an observer and a

scene
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Brightness Constancy Constraint
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Frame t Frame t + At

I(x,y,t) = I(z + Az,y + Ay, t + At)

Taylor series

I(zx+ Az,y+ Ay, t + At) = I(z,y,t) + ?Aaf: — %Ay o %At—l—higher-order terms
x
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Brightness Constancy Constraint
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Brightness Constancy Constraint
ol dv Oldy 01

Ox dt Oy dt ot
01 , 01 (spatial gradient; we can compute this!)
Oox 0Oy
dr dy
1 =(u,v) (optical flow, what we want to find)
01

o (derivative across frames. Also known,
ot e.g. frame difference)
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Image Gradient
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Frame Difference

BERERERE 1[1]1]1]1 0 0 0 0 O
1 [ - 11 1 1 0 0 0 0 0
1 .10 10 10 10 11 1 1 1 09 9 9 9
110 10 10 10 = 1 1 10 10 10 — 0 9 0 0 O
1 10 10 10 10 1 1 10 10 10 0 9 0 0 O
1 .10 10 10 10 1 1 10 10 10 0 9 0 0 O

(Example of a forward difference)
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Brightness Constancy Constraint

lou+1Lyv+ 1 =0

Known (spatial and

temporal gradients) Unknown (optical flow)

_ Solution lies on a straight line
* For each pixel, there

are two unknowns

constraint line

The solution cannot be determined uniquely with a single constraint (a single pixel)
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Brightness Constancy Constraint

Solution (u, v)

(Les Iy)
lyu+ 1yv+ 1 =0 s

 The component of the flow vector in the gradient direction is
determined (called normal flow) (Recall vector projection geometry)

I2 412 o) I2+l2
v 7

 The component of the flow vector orthogonal to this direction cannot
be determined.

https://en.wikipedia.org/wiki/Dot_product
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Lucas-Kanade Method

lyu+ 1yv+ 1 =0

Assumption: the flow is constant in a local neighborhood of a pixel
under consideration

Use two or more pixels to compute optical flow 5x5 window
- Ix(p1)  Iy(p1) | - I1(p1) |
I:(p2) Iy(p2) [ u ] _ | Li(p2)
: : v :
1x(p25) Iy(p2s) I1(p2s) |
A d b
25x2 2x1 25x1
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Lucas-Kanade Method

Solve the least squares problem

A d=b — minimize ||Ad — b||?
25x2 2x1 25x1

2X2 2x1 2x1

(AT A) d= Alb

Sl NIy || uw| _ | Sl
I ZIQjIy Zly.[y 1L U | I Z_[y]t |
Al A Al'p

https://en.wikipedia.org/wiki/Proofs_involving_ordinary least _squares#Least squares_estimator for .CE.B2_

ﬁI-D THE UNIVERSITY OF TEXAS AT DALLAS



e

Optical Flow Exampl

a5
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Video Demo

Source: http://clim.inria.fr/Datasets/SyntheticVideolLF/




Video Demo
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Source: http://clim.inria.fr/Datasets/SyntheticVideolLF/
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Aperture Problem in Optical Flow Estimation

Motion detectors are local
Our visual system infers the global motion
The aperture problem

Horn—Schunck method introduces a global constraint of smoothness to solve the problem [/ ]
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https://en.wikipedia.org/wiki/Horn%E2%80%93Schunck_method

Next Lecture

 Deep neural networks for optical flow estimation

* Applications of optical flow
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Further Reading

Lucas-Kanade method

Determine Constant Optical Flow, Berthold K.P. Horn
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https://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade_method
https://people.csail.mit.edu/bkph/articles/Fixed_Flow.pdf

