

Semantic Segmentation

CS 6384 Computer Vision Professor Yapeng Tian Department of Computer Science

Semantic Scene Understanding

Object Detection

Semantic Segmentation

Instance Segmentation

Semantic Segmentation

Semantic image segmentation is the task of **classifying each pixel in an image from a predefined set of classes**

The pixels belonging to the bed are classified in the class "bed", the pixels corresponding to the walls are labeled as "wall", etc.

Problem Formulation

Input

Semantic Labels

Given an image of size W x H x 3, we aim to generate a W x H matrix containing the predicted class labels corresponding to all the pixels.

Applications: Medical images

Input Image

Segmented Image

A chest x-ray with the heart (red), lungs (green), and clavicles (blue) are segmented.

Novikov et al. Fully Convolutional Architectures for Multi-Class Segmentation in Chest Radiographs, 2018

Applications: Autonomous Vehicles

A real-time segmented road scene for autonomous driving

https://www.youtube.com/watch?v=ATIcEDSPWXY

Semantic Segmentation

Label pixels into semantic classes

Naïve method

• Classify each pixel independently

Better idea

• Using context of pixels

Pixel-wise image classification

Person Bicycle Background

Adapt classification networks for dense prediction

• These FC layers can also be viewed as convolutions with kernels that cover their entire input regions

Transforming FC layers into Conv layers enables a classification net to output a heatmap

Fully Convolutional Networks for Semantic Segmentation. Long et al., CVPR, 2015

Convert AlexNet

[224x224x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

layer {
 name: "fc6"
 type: "Convolution"
 bottom: "pool5"
 top: "fc6"
 convolution_param {
 num_output: 4096
 pad: 0
 kernel_size: 6
 group: 1
 stride: 1
 }
}

layer {
 name: "fc7"

type: "Convolution"
bottom: "fc6"
top: "fc7"
convolution_param {
 num_output: 4096
 pad: 0
 kernel_size: 1
 group: 1
 stride: 1

layer { name: "score fr" type: "Convolution" bottom: "fc7" top: "score fr" param { lr mult: 1 decay_mult: 1 param { lr mult: 2 decay mult: 0 convolution param { num output: 21 pad: 0 kernel_size: 1

Fully Convolutional Networks for Semantic Segmentation. Long et al., CVPR, 2015

layer { Deconvolution for up-sampling name: "upscore" type: "Deconvolution" bottom: "score fr" 2 x 2 kernel stride = 2top: "upscore" intermediate grid param { output lr mult: 0 input convolution param { num_output: 21 bias_term: false kernel_size: 63 stride: 32 3 x 3 MM 6 X 6 stride=1

Pytorch: nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2)

<u>source</u>

Combine predictions with different resolutions

Fully Convolutional Networks for Semantic Segmentation. Long et al., CVPR, 2015

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger et al., MICCAI 2015

Instance Segmentation

Separate object instances in the same class

Detection + segmentation

Image Recognition

Semantic Segmentation

Object Detection

Instance Segmentation

https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works

Mask R-CNN

Mask R-CNN. He et al., ICCV, 2017

Rol Pooling vs. Rol Align

Bilinear interpolation for non-integer positions in RoI align

ID THE UNIVERSITY OF TEXAS AT DALLAS

Mask R-CNN

	align?	bilinear?	agg.	AP	AP_{50}	AP_{75}
RoIPool [12]			max	26.9	48.8	26.4
RoIWarp [10]		\checkmark	max	27.2	49.2	27.1
		\checkmark	ave	27.1	48.9	27.1
RoIAlign	\checkmark	\checkmark	max	30.2	51.0	31.8
	\checkmark	\checkmark	ave	30.3	51.2	31.5

Mask R-CNN. He et al., ICCV, 2017

Computer Vision

Semantic Segmentation

3673 papers with code • 97 benchmarks • 255 datasets

Semantic segmentation, or image segmentation, is the task of clustering parts of an image together which belong to the same object class. It is a form of pixel-level prediction because each pixel in an image is classified according to a category. Some example benchmarks for this task are Cityscapes, PASCAL VOC and ADE20K. Models are usually evaluated with the Mean Intersection-Over-Union (Mean IoU) and Pixel Accuracy metrics.

Benchmarks

Add a Result

🕑 Edit

3enchmarks						Content
These leade	erboards are used to track pro	ogress in Semantic Segmentation				Introduction
rend	Dataset	Best Model	Paper	Code	Compare	Benchmarks ⊜ Datasets ♣ Subtasks
مسر	ADE20K	InternImage-H (M3I Pre-training)	6	0	See all	 Libraries Papers
	Cityscapes test	InternImage-H	6	0	See all	 Most implemented Social Latest
م	ADE20K val	BEIT-3		0	See all	- No code
	Cityscapes val	InternImage-H		0	See all	
	NYU Depth v2	CMX (B5)	6	0	See all	
	PASCAL Context	InternImage-H		0	See all	
<	PASCAL VOC 2012 test	DeepLabv3+ (Xception-65-JFT)	6	0	See all	
	S3DIS	WindowNorm+StratifiedTransformer	6	0	See all	
	DensePASS	Trans4PASS+ (multi-scale)	6	0	See all	
	S3DIS Area5	PTv2	6	0	See all	

Show all 97 benchmarks

Libraries ①

Use these libraries to find Semantic Segmentation models and implementations

O PaddlePaddle/PaddleSeg	52 papers	6,625 ★
O osmr/imgclsmob	30 papers	2,776 ★
O rwightman/pytorch-image-models	27 papers	24,242 ★
O open-mmlab/mmsegmentation	19 papers	5,431 ★
See all 31 libraries.		

https://paperswithcode.com/task/semantic-segmentation

Summary

Semantic segmentation

• Label pixels into object classes

Instance segmentation

- Separate object instances in the same class
- Detection + segmentation inside each box

Further Reading

FCN, 2015 https://arxiv.org/abs/1411.4038

Unet, 2015 https://arxiv.org/abs/1505.04597

Mask R-CNN, 2017 https://arxiv.org/abs/1703.06870

DeepLab, 2015 https://arxiv.org/abs/1606.00915

A semantic segmentation overview

https://www.jeremyjordan.me/semantic-segmentation/