

Object Detection

CS 6384 Computer Vision Professor Yapeng Tian Department of Computer Science

Slides borrowed from Professor Yu Xiang

Object Detection

Localize objects in images and classify them

Why using bounding boxes?

- Easy to store
 - (x, y, w, h): box center with width, height
 - (x1, y1, x2, y2): top left corner and bottom right corner
- Easy for image processing
 - Crop a region

Object Detection

Localization + Classification

Localization: Sliding Window

Select a window with a fixed size

Scan the input image with the window (bounding box)

How to deal with different object scales and aspect ratios?

- Use boxes with different aspect ratios
- Image pyramid

https://cvexplained.wordpress.com/tag/sliding-windows/

Localization: Region Proposal

Leverage methods that can generate regions with high likelihood of containing objects

• E.g., bottom-up segmentation methods, using edges

Classification: Features

Traditional methods: Hand-crafted features

Deep learning methods: learned features in the network

Viola and Jones: rectangle features

Dadal & Triggs: Histograms of Oriented Gradients

Classification: Classifiers

Traditional methods

- AdaBoost
- Support vector machines (SVMs)

Viola and Jones: AdaBoost Robust Real-time Object Detection. IJCV, 2001.

- Deep learning methods
 - Neural networks

Felzenszwalb et al: SVM

Object detection with discriminatively trained part-based models . TPAMI, 2009.

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation. Girshick et al., CVPR, 2014

R-CNN

VOC 2007 test	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP
R-CNN pool ₅	51.8	60.2	36.4	27.8	23.2	52.8	60.6	49.2	18.3	47.8	44.3	40.8	56.6	58.7	42.4	23.4	46.1	36.7	51.3	55.7	44.2
R-CNN fc ₆	59.3	61.8	43.1	34.0	25.1	53.1	60.6	52.8	21.7	47.8	42.7	47.8	52.5	58.5	44.6	25.6	48.3	34.0	53.1	58.0	46.2
R-CNN fc ₇	57.6	57.9	38.5	31.8	23.7	51.2	58.9	51.4	20.0	50.5	40.9	46.0	51.6	55.9	43.3	23.3	48.1	35.3	51.0	57.4	44.7
R-CNN FT pool ₅	58.2	63.3	37.9	27.6	26.1	54.1	66.9	51.4	26.7	55.5	43.4	43.1	57.7	59.0	45.8	28.1	50.8	40.6	53.1	56.4	47.3
R-CNN FT fc ₆	63.5	66.0	47.9	37.7	29.9	62.5	70.2	60.2	32.0	57.9	47.0	53.5	60.1	64.2	52.2	31.3	55.0	50.0	57.7	63.0	53.1
R-CNN FT fc7	64.2	69.7	50.0	41.9	32.0	62.6	71.0	60.7	32.7	58.5	46.5	56.1	60.6	66.8	54.2	31.5	52.8	48.9	57.9	64.7	54.2
R-CNN FT fc7 BB	68.1	72.8	56.8	43.0	36.8	66.3	74.2	67.6	34.4	63.5	54.5	61.2	69.1	68.6	58.7	33.4	62.9	51.1	62.5	64.8	58.5
DPM v5 [20]	33.2	60.3	10.2	16.1	27.3	54.3	58.2	23.0	20.0	24.1	26.7	12.7	58.1	48.2	43.2	12.0	21.1	36.1	46.0	43.5	33.7
DPM ST [28]	23.8	58.2	10.5	8.5	27.1	50.4	52.0	7.3	19.2	22.8	18.1	8.0	55.9	44.8	32.4	13.3	15.9	22.8	46.2	44.9	29.1
DPM HSC [31]	32.2	58.3	11.5	16.3	30.6	49.9	54.8	23.5	21.5	27.7	34.0	13.7	58.1	51.6	39.9	12.4	23.5	34.4	47.4	45.2	34.3

BB: bounding box regression

Features from AlexNet

Rich feature hierarchies for accurate object detection and semantic segmentation. Girshick et al., CVPR, 2014

Fast R-CNN

Fast R-CNN. Girshick, ICCV, 2015

Rol Pooling

Divide the mapping Rol into H x W grids

Bounding Box Regression

Predict bounding box regression offset for K object classes

$$t^{k} = (t^{k}_{x}, t^{k}_{y}, t^{k}_{w}, t^{k}_{h})$$

$$t_{x} = (G_{x} - P_{x})/P_{w}$$

$$t_{y} = (G_{y} - P_{y})/P_{h}$$

$$t_{w} = \log(G_{w}/P_{w})$$

$$t_{h} = \log(G_{h}/P_{h}).$$

G: ground truth, P: input Rol

$$\hat{G}_x = P_w d_x(P) + P_x$$
$$\hat{G}_y = P_h d_y(P) + P_y$$
$$\hat{G}_w = P_w \exp(d_w(P))$$
$$\hat{G}_h = P_h \exp(d_h(P)).$$

Fast R-CNN

Bounding box regress target

Loss function

$$L(p, u, t^u, v) = L_{cls}(p, u) + \lambda [u \ge 1] L_{loc}(t^u, v)$$

Softmax classification probabilities

 $p = (p_0, \ldots, p_K)$

True class label
$$t^u = (t^u_x, t^u_y, t^u_h, t^u_h)$$

$$L_{\text{loc}}(t^{u}, v) = \sum_{i \in \{x, y, w, h\}} \text{smooth}_{L_{1}}(t^{u}_{i} - v_{i}) \qquad \text{smooth}_{L_{1}}(x) = \begin{cases} 0.5x^{2} & \text{if } |x| < 1\\ |x| - 0.5 & \text{otherwise} \end{cases}$$

Fast R-CNN

	Fa	st R-CN	N	F	R-CNN	SPPnet	
	S	Μ	L	S	Μ	L	$^{\dagger}\mathbf{L}$
train time (h)	1.2	2.0	9.5	22	28	84	25
train speedup	18.3 ×	$14.0 \times$	8.8 imes	$1 \times$	$1 \times$	$1 \times$	$3.4 \times$
test rate (s/im)	0.10	0.15	0.32	9.8	12.1	47.0	2.3
\triangleright with SVD	0.06	0.08	0.22	-	-	-	-
test speedup	$98 \times$	$80 \times$	146×	$1 \times$	$1 \times$	$1 \times$	$20 \times$
⊳ with SVD	169×	$150 \times$	213 ×	-	-	-	-
VOC07 mAP	57.1	59.2	66.9	58.5	60.2	66.0	63.1
\triangleright with SVD	56.5	58.7	66.6	-	-	-	-

S: AlexNet, M: VGG, L: deep VGG SVD for FCs layers $W \approx U \Sigma_t V^T$

Fast R-CNN. Girshick, ICCV, 2015

Faster R-CNN

A single network for object detection

- Region proposal network
- Classification network

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Ren et al., NeurIPS, 2015

Region Proposal Network

3x3 conv layer to 256-d

layer {
 name: "rpn_conv/3x3"
 type: "Convolution"
 bottom: "conv5"
 top: "rpn/output"
 param { lr_mult: 1.0 }
 param { lr_mult: 2.0 }
 convolution_param {
 num_output: 256
 kernel_size: 3 pad: 1 stride: 1
 weight_filler { type: "gaussian" std: 0.01 }
 bias_filler { type: "constant" value: 0 }
 }
}

classification

ayer {
 name: "rpn_cls_score"
 type: "Convolution"
 bottom: "rpn/output"
 top: "rpn_cls_score"
 param { lr_mult: 1.0 }
 param { lr_mult: 2.0 }
 convolution_param {
 num_output: 18 # 2(bg/fg) * 9(anchors)
 kernel_size: 1 pad: 0 stride: 1
 weight_filler { type: "gaussian" std: 0.01 }
 bias_filler { type: "constant" value: 0 }
}

Bounding box regression

layer {
 name: "rpn_bbox_pred"
 type: "Convolution"
 bottom: "rpn/output"
 top: "rpn_bbox_pred"
 param { lr_mult: 1.0 }
 param { lr_mult: 2.0 }
 convolution_param {
 num_output: 36 # 4 * 9(anchors)
 kernel_size: 1 pad: 0 stride: 1
 weight_filler { type: "gaussian" std: 0.01 }
 bias_filler { type: "constant" value: 0 }
 }
}

Two stage vs One stage

Two stage detection methods

- Stage 1: generate region proposals
- Stage 2: classify region proposals and refine their locations
- E.g., R-CNN, Fast R-CNN, Faster R-CNN

One stage detection methods

- An end-to-end network for object detection
- E.g., YOLO

Regress to bounding box locations and class probabilities

- Each grid handles objects with centers (x, y) in it
- Each grid predicts B bounding boxes
- Each bounding box predicts (x, y, w, h) and confidence (IoU of box and ground truth box)

 $Pr(Object) * IOU_{pred}^{truth}$

- Each grid also predicts C class probabilities $\Pr(\text{Class}_i|\text{Object})$
- In testing

 $\Pr(\text{Class}_i | \text{Object}) * \Pr(\text{Object}) * \text{IOU}_{\text{pred}}^{\text{truth}} = \Pr(\text{Class}_i) * \text{IOU}_{\text{pred}}^{\text{truth}}$

Regress to bounding box locations and class probabilities

 $\mathbb{1}_{ij}^{\text{obj}}$

 $\mathbb{1}_{i}^{\text{obj}}$

Training loss function

Object in cell i

 $\lambda_{\text{coord}} = 5$ $\lambda_{\text{noobj}} = .5$

jth bounding box from cell i "responsible" for the prediction

highest current IOU with the ground truth

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2$$

Non-maximum Suppression

Keep the box with the highest confidence/score Compute IoU between this box and other boxes Suppress boxes with IoU > threshold

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

YOLOv2 and YOLOv3

YOLOv2

- Batch normalization (normalization of the layers' inputs by re-centering and re-scaling)
- High resolution classifier 416x416
- Convolutional with anchor boxes (remove FC layers)
- Dimension clustering to decide the anchor boxes
- Multi-scale training (change input image size)

YOLOv3

- Binary cross-entropy loss for the class predictions
- Prediction across scales

YOLO9000: Better, Faster, Stronger. Redmon & Farhadi, CVPR, 2017 YOLOv3: An Incremental Improvement

	Туре	Filters	Size	Output
	Convolutional	32	3 × 3	256×256
	Convolutional	64	3 × 3 / 2	128 × 128
	Convolutional	32	1 × 1	
1×	Convolutional	64	3 × 3	
	Residual			128 × 128
	Convolutional	128	3 × 3 / 2	64×64
	Convolutional	64	1 × 1	
2×	Convolutional	128	3 × 3	
	Residual			64×64
	Convolutional	256	3 × 3 / 2	32 × 32
	Convolutional	128	1 × 1	
8×	Convolutional	256	3 × 3	
	Residual			32 × 32
	Convolutional	512	3 × 3 / 2	16 × 16
	Convolutional	256	1 × 1	
8×	Convolutional	512	3 × 3	
	Residual			16 × 16
	Convolutional	1024	3 × 3 / 2	8 × 8
[Convolutional	512	1 × 1	
4×	Convolutional	1024	3 × 3	
	Residual			8 × 8
	Avgpool		Global	
	Connected		1000	
	Softmax			

Table 1. Darknet-53.

DTER

Vision transformer-based object detection

End-to-End Object Detection with Transformers. Carion et al., ECCV, 2020

Summary

Two-stage detectors

- R-CNN, Fast R-CNN, Faster R-CNN
- Region proposal + classification
- Good performance, slow
- **One-stage detectors**
 - YOLO, SSD
 - End-to-end network to regress to bounding boxes
 - Fast, comparable performance to two-stage detectors
- **Transformer-based detectors**
 - DTER
 - Attention-based set prediction, using object queries

Object Detection on COCO test-dev

https://paperswithcode.com/sota/object-detection-on-coco

Further Reading

Viola–Jones object detection, 2001 https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf Deformable part model, 2010, https://ieeexplore.ieee.org/document/5255236 R-CNN, 2014 https://arxiv.org/abs/1311.2524 Fast R-CNN, 2015 https://arxiv.org/abs/1504.08083 Faster R-CNN, 2015 https://arxiv.org/abs/1506.01497 YOLO, 2015 https://arxiv.org/abs/1506.02640 YOLOv2, 2016 https://arxiv.org/abs/1612.08242 Feature Pyramid Networks, 2017 https://arxiv.org/pdf/1612.03144.pdf DTER, 2020 https://arxiv.org/abs/2005.12872