

Transformers

CS 6384 Computer Vision Professor Yapeng Tian Department of Computer Science

Slides borrowed from Professor Yu Xiang

Recurrent Neural Networks

Sequential Data Labeling

Part-of-speech tagging (grammatical tagging)

Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
	punctuation marks	.,;!
х	other	ersatz, esprit, dunno, gr8, univeristy

Machine Translation

Translate a phrase from one language to another

• E.g., English phrase to French phrase

	English	▼ ←	French
Google Translation	UT Dallas is a rising public research university in the heart of DFW.	×	UT Dallas est une université de recherche publique en plein essor au cœur de DFW.

13 words

15 words

Machine Translation

Input
$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T)$$

Output $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{T'})$ $T \neq T'$
Not one to one mapping $\begin{array}{c} \mathbf{y}_{t-1} & \mathbf{y}_t & \mathbf{y}_{t+1} \\ \uparrow & \uparrow & \uparrow \end{array}$
RNN $\longrightarrow \mathbf{h}_{t-1} \longrightarrow \mathbf{h}_t \longrightarrow \mathbf{h}_{t+1} \longrightarrow \mathbf{h}_{t+1}$
 $\mathbf{x}_{t-1} & \mathbf{x}_t & \mathbf{x}_{t+1} \end{array}$

Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. Cho et al., EMNLP'14

RNN Encoder-Decoder

Encoder
$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$$
 $\mathbf{c} = \mathbf{h}_T$
Decoder $\mathbf{s}_t = f(\mathbf{s}_{t-1}, \mathbf{y}_{t-1}, \mathbf{c})$ $\mathbf{y}_t = g(\mathbf{s}_t, \mathbf{y}_{t-1}, \mathbf{c})$

Pros

• Can deal with different input size and output size

Cons

 \bullet The fixed length embedding ${f C}$ cannot handle long sentence well (long-distance dependencies)

Bi-directional RNNs

https://blog.paperspace.com/bidirectional-rnn-keras/

RNN Encoder-Decoder with Attentions

RNN Encoder-Decoder with Attentions

Alignment model (attention)

$$e_{ij} = a(\mathbf{s}_{i-1}, \mathbf{h}_{j}) \qquad \text{Softmax } \alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$
Feedforwar didden state of output didden state of input Attending to different parts of the input of the input state of input $\mathbf{s}_i = f(\mathbf{s}_{i-1}, \mathbf{y}_{i-1}, \mathbf{c}_i)$
Context $\mathbf{c}_i = \sum_{j=1}^{T} \alpha_{ij} \mathbf{h}_j$
Output $\mathbf{y}_i = g(\mathbf{s}_i, \mathbf{y}_{i-1}, \mathbf{c}_i)$

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE. Bahdanau et al., ICLR'15

RNN Encoder-Decoder with Attentions

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE. Bahdanau et al., ICLR'15

Limitations of RNNs

The sequential computation of hidden states precludes parallelization within training examples

Cannot handle long sequences well

- Truncated back-propagation due to memory limits
- Difficult to capture dependencies in long distances

Transformer

No recurrence

Attention only

- Global dependencies between input and output
- More parallelization compared to RNNs

Transformer: Encoder-Decoder with Attention

Transformer: Attention

Input

- (key, value) pairs (think about python dictionary)
- A query

Output

- Compare the query to all the keys to compute weights
- Weighted sum of the values

Transformer: Attention

MatMul **Scaled Dot-Product Attention** • Keys $K:m imes d_k$ SoftMax • Values $V:m imes d_n$ Mask (opt.) • n queries $Q:n imes d_k$ Scale $\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$ MatMul $n \times d_n$ weights Attention is all you need. Vaswani et al., NeurIPS'17

Transformer: Attention

Concat **Multi-Head Attention** - Suppose the latent vector is with dimension $d_{
m model}$ Scaled Dot-Product $m \times d_{\text{model}} \quad d_{\text{model}} \times d_k$ Attention Linear Linear Linear head_i = Attention (QW_i^Q, KW_i^K, VW_i^V) Projection $n \times d_n$ $n \times d_{\text{model}} d_{\text{model}} \times d_k \qquad m \times d_{\text{model}} d_{\text{model}} \times d_v$ $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ $n \times d_{\text{model}}$ $n \times hd_n$ $hd_v \times d_{model}$ Attention is all you need. Vaswani et al., NeurIPS'17

Multi-Head Attention

Linear

Transformer: Encoder

Self-attention

 • Keys, values and queries are all the same • n input tokens $n \times d_{\rm model}$

MultiHead(Q, K, V)

Residual connection

LayerNorm
$$(x + \text{Sublayer}(x))$$

• Layer normalization $a^{l} \coloneqq \gamma \hat{a}^{l} + \beta = LN_{\gamma,\beta}(a^{l})$
 $\mu^{l} = \frac{1}{H} \sum_{i=1}^{H} a^{l}_{i} \qquad \sigma^{l} = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (a^{l}_{i} - \mu^{l})^{2}} \quad \hat{a}^{l} = \frac{a^{l} - \mu^{l}}{\sigma^{l}}$

Attention is all you need. Vaswani et al., NeurIPS'17

Transformer: Encoder

Feed Forward Network

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

Positional encoding

- Make use the order of the sequence
- With dimension $\, d_{
 m model} \,$ for each input

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Attention is all you need. Vaswani et al., NeurIPS'17

Transformer: Decoder

Encoder-decoder attention

- (Key, value): encoder output
- Queries: decoder output
- Every position in the decoder attends to all positions in the input sequence

Softmax

• Predicts next-token probabilities

Transformer

Attention is all you need. Vaswani et al., NeurIPS'17

Transformer: Attention Visualization

Vision Transformer

Convert an image into a sequence of "token"

$$\mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}$$

$$\mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times I}$$

Vision Transformer

Vision Transformer

Vision Transformer

Pretrain on a large-scale dataset Fine-tune on different tasks

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Vision Transformer

Big Transfer (BiT)

ResNets-based transfer

Vision transformer works better when pre-trained on large-scale dataset

Summary

Transformers

- Can capture long-distance dependencies (global attention)
- Computationally efficient, more parallelizable

Vision transformers

• Works better when pre-trained on large scale datasets (e.g., 300M images)

Further Reading

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation https://arxiv.org/abs/1406.1078

Neural Machine Translation by Jointly Learning to Align and Translate https://arxiv.org/abs/1409.0473

Transformer: Attention is all you need https://arxiv.org/abs/1706.03762

Vision transformer: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale https://arxiv.org/abs/2010.11929