
Recurrent Neural Networks
CS 6384 Computer Vision

Professor Yapeng Tian
Department of Computer Science

Slides borrowed from Professor Yu Xiang



Single Images

Convolutional neural networks
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Image

CNN

High-level information
• Depth
• Object classes
• Object poses
• Etc.



Sequential Data

Data depends on time
• Video

• Sentence
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UT Dallas is a rising public research university in the heart of DFW.
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Sequential Data Labeling

Video frame labeling
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https://bleedai.com/human-activity-recognition-using-tensorflow-cnn-lstm/

https://bleedai.com/human-activity-recognition-using-tensorflow-cnn-lstm/


Sequential Data Labeling

Part-of-speech tagging (grammatical tagging)
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Sequential Data Labeling
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Input

Output label

Classifier How to capture 
information across 
time?



Recurrent Neural Networks
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Input

Output label

RNN RNN RNN
Internal state 

(memory)



Hidden State Update
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Input at 
time t

Hidden state 
at time t-1

Hidden state 
at time t

Updating function 
with parameters W

RNN



Using the Hidden State
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RNN



Recurrent Neural Networks
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Input

Output label

Internal state 
(memory)



Vanilla RNN
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RNN

Hidden state updating rule

tanh    tanh(x)



RNN Computation Graph
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The same set of weights for different time steps

…



RNN Training
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…

L1 L2 L3

Loss
…

Gradients



Backpropagation through Time

14

Input

Output 
label

Hidden 
state

What is the problem in this training paradigm? 



Truncated Backpropagation through Time
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Run forward and backward 
through chunks of the sequence 
instead of whole sequence



Truncated Backpropagation through Time
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Carry hidden states forward in 
time forever, but only 
backpropagate for some 
smaller number of steps



Truncated Backpropagation through Time
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Vanilla RNN Gradient Flow
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Vanilla RNN Gradient Flow
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Vanilla RNN Gradient Flow
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Vanilla RNN Gradient Flow
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• Vanishing 
gradients

https://en.wikipedia.org/wiki/Matrix_norm
• Exploding 

gradients

https://en.wikipedia.org/wiki/Matrix_norm


Vanilla RNN Gradient Flow

Exploding gradients

• Gradient clipping

Vanishing gradients

• Change RNN architecture
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Long Short Term Memory (LSTM)
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Vanilla RNN
LSTM

Store Cell and hidden states

Input gate

forget gate

output gate

update

Cell

Hidden state
Sigmoid



Long Short Term Memory (LSTM)
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• g: update, how much to write to cell
• i: Input gate, whether to write to cell
• f: Forget gate, whether to erase cell
• o: Output gate, how much to reveal cell



Long Short Term Memory (LSTM)
Make the RNN easier to preserve information 
over many steps

• E.g., f = 1 and i = 0

• This is difficult for vanilla RNN

LSTM does not guarantee that there is no 
vanishing or exploding gradient

It provides an easier way to learn long-
distance dependencies
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Gated Recurrent Unit (GRU)
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https://en.wikipedia.org/wiki/Gated_recurrent_unit

https://en.wikipedia.org/wiki/Gated_recurrent_unit


GRUs vs. LSTMs

Both have a forget gate

GRU has fewer parameters, no output gate

GRUs have similar performance compared to LSTMs, have shown 
better performance on certain datasets
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Recurrent Neural Networks
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E.g., action recognition 
on video frames

E.g., image 
captioning, image -> 
sequences of words

E.g., action prediction, 
sequences of frames -
> action class

E.g., Video Captioning
Sequence of video frames ->
caption



Recurrent Units on CNN Features
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Convolution 
+ ReLU
Max Pooling

Deconvolution

Concatenation

Addition

Recurrent Units

data association

…

…

…

RGB Image

Depth Image

Time t

RGB Image

Depth Image

Time t+1 Labels

Labels

DA-RNN. Xiang & Fox, RSS’17



Summary

RNNs can be used for sequential data to capture dependencies in time

LSTMs and GRUs are better then vanilla RNNs

It is difficult to capture long-term dependencies in RNNs

Use transformers  (next lecture)
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Further Reading
Deep Learning Textbook: Sequence Modeling: Recurrent and Recursive Nets
https://www.deeplearningbook.org/contents/rnn.html

Stanford CS231n, lecture 10, Recurrent Neural Networks 
http://cs231n.stanford.edu/

Long Short Term Memory 
https://www.researchgate.net/publication/13853244_Long_Short-
term_Memory
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Units https://arxiv.org/pdf/1412.3555.pdf
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https://www.deeplearningbook.org/contents/rnn.html
http://cs231n.stanford.edu/
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/pdf/1412.3555.pdf

