

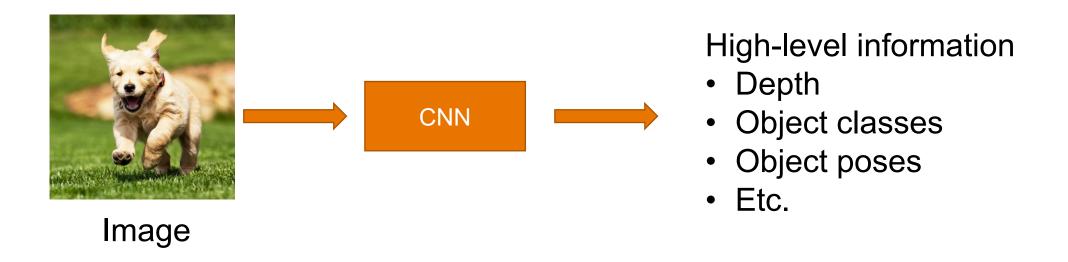
Recurrent Neural Networks

CS 6384 Computer Vision
Professor Yapeng Tian
Department of Computer Science

Slides borrowed from Professor Yu Xiang

Single Images

Convolutional neural networks



Sequential Data

Data depends on time

Video

t-1

t

t+1

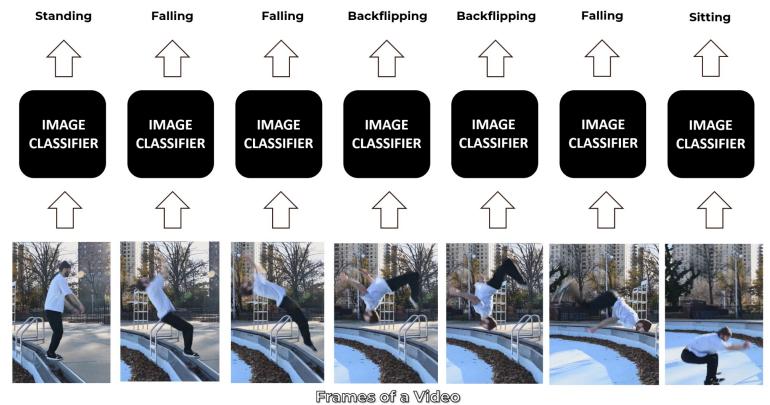
Sentence

UT Dallas is a rising public research university in the heart of DFW.

t

Sequential Data Labeling

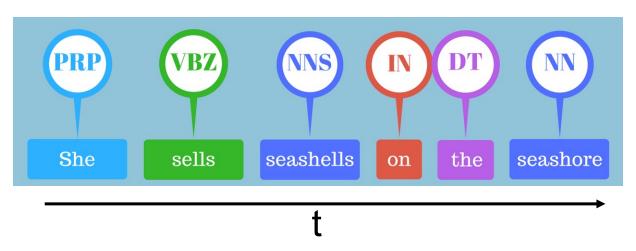
Video frame labeling



https://bleedai.com/human-activity-recognition-using-tensorflow-cnn-lstm/

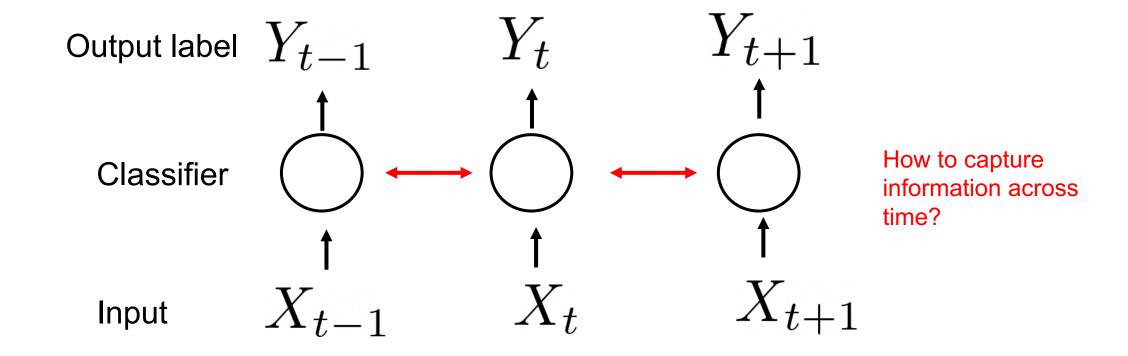
Sequential Data Labeling

Part-of-speech tagging (grammatical tagging)

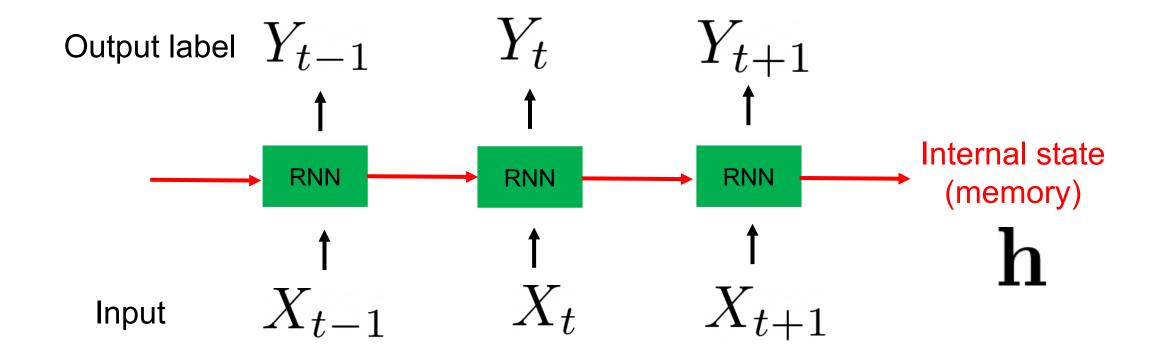


Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
	punctuation marks	.,;!
X	other	ersatz, esprit, dunno, gr8, univeristy

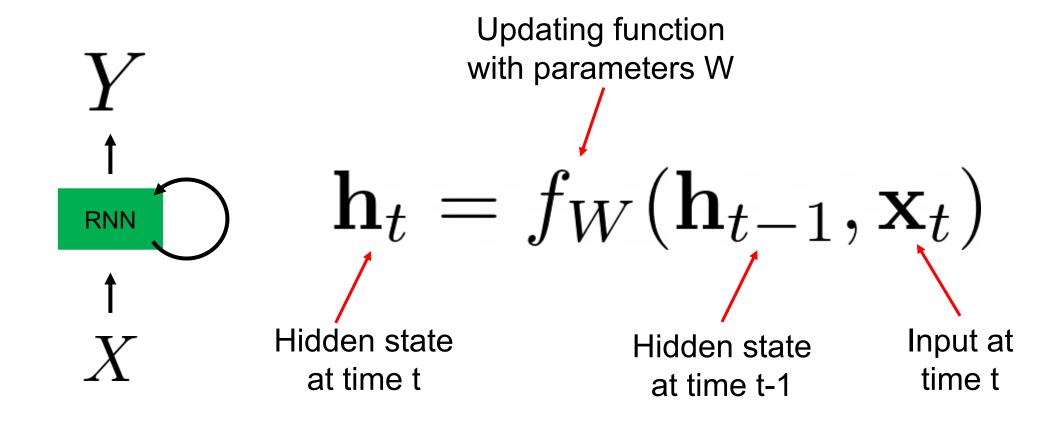
Sequential Data Labeling



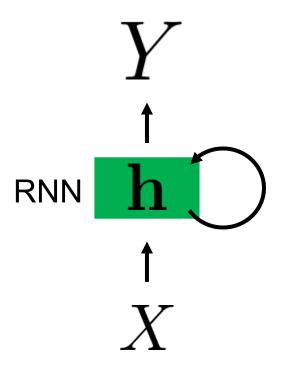
Recurrent Neural Networks



Hidden State Update



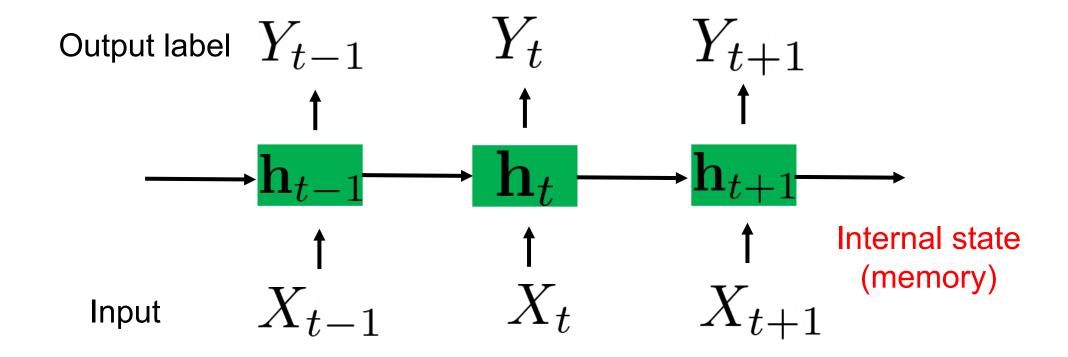
Using the Hidden State



$$\mathbf{h}_t = f_W(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

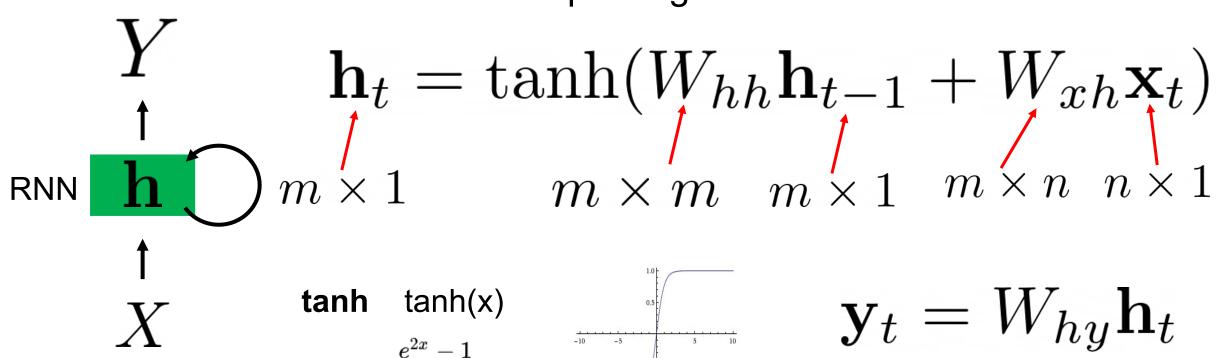
$$\mathbf{y}_t = f_{W'}(\mathbf{h}_t)$$

Recurrent Neural Networks

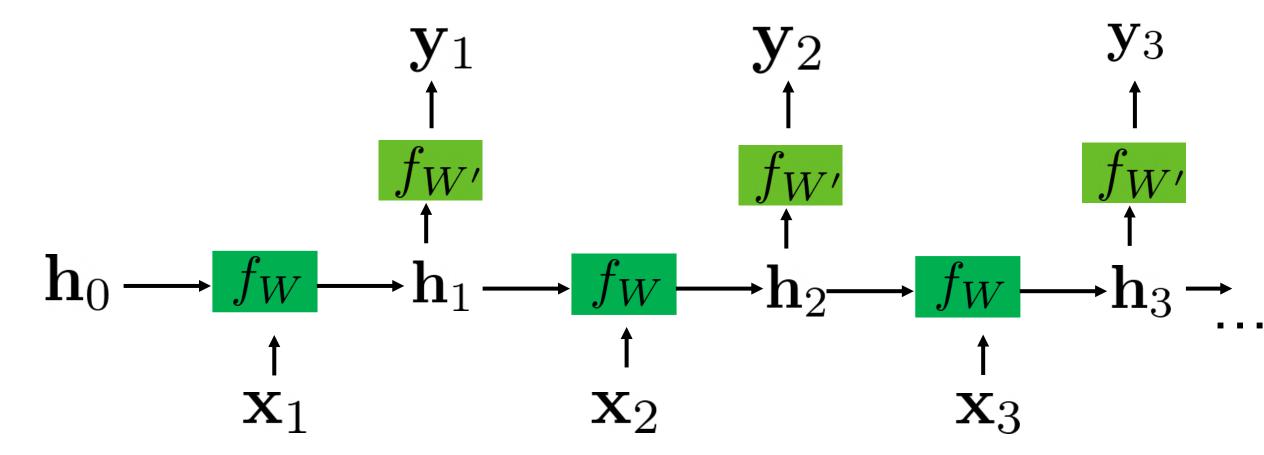


Vanilla RNN

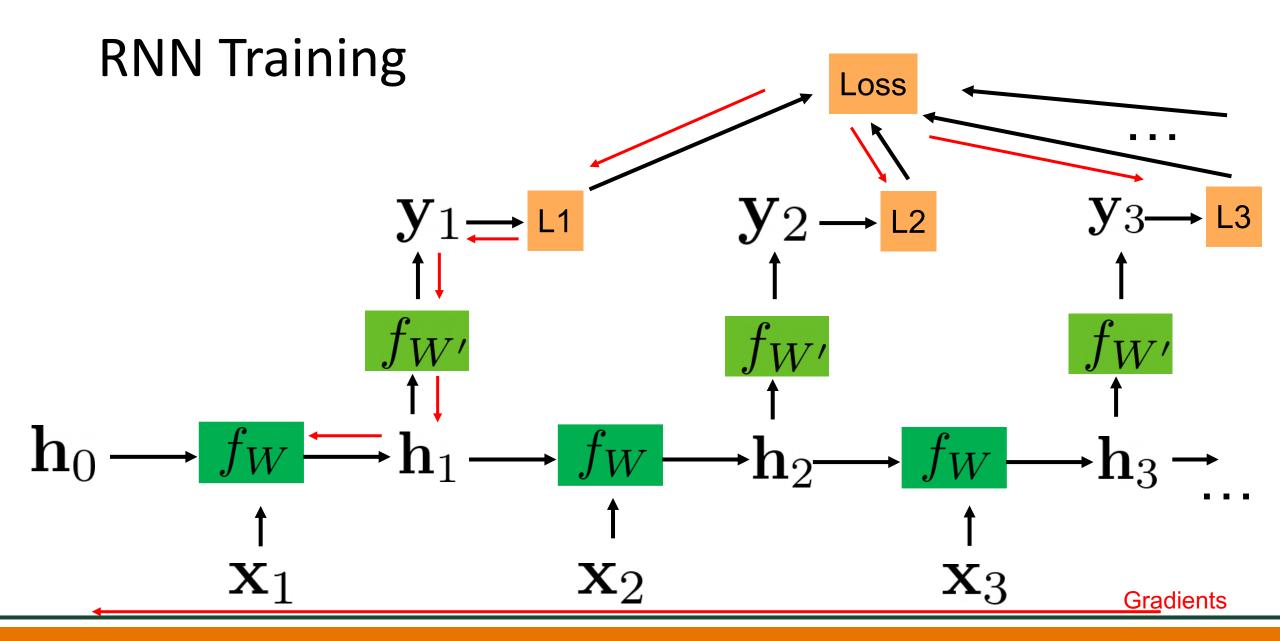
Hidden state updating rule



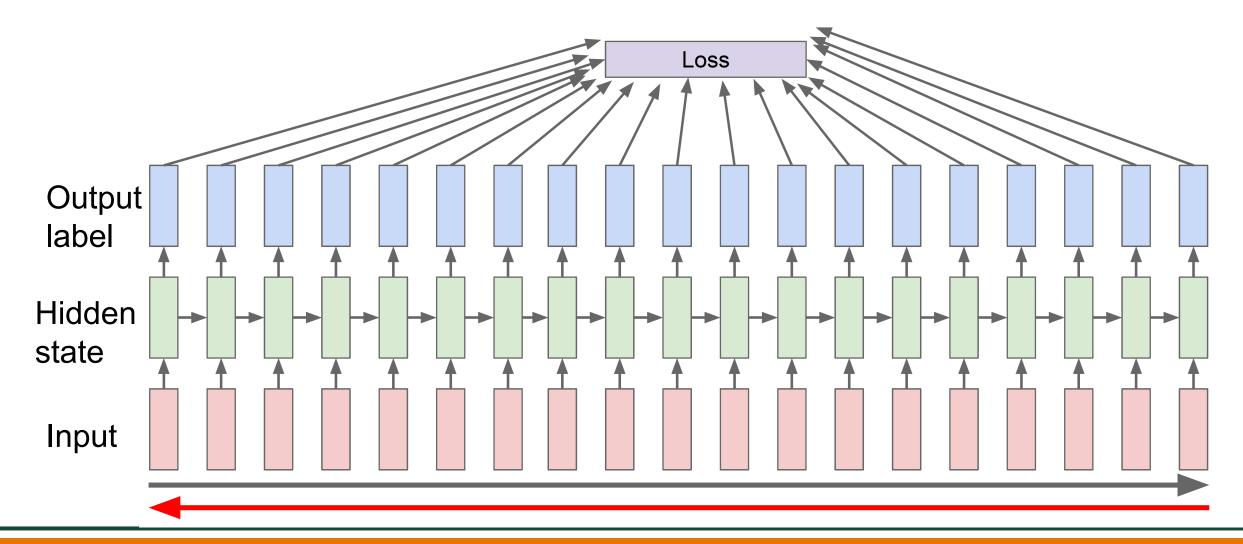
RNN Computation Graph



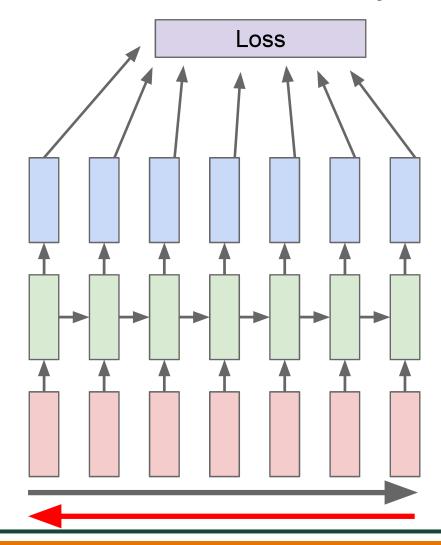
The same set of weights for different time steps f_W $f_{W'}$



Backpropagation through Time

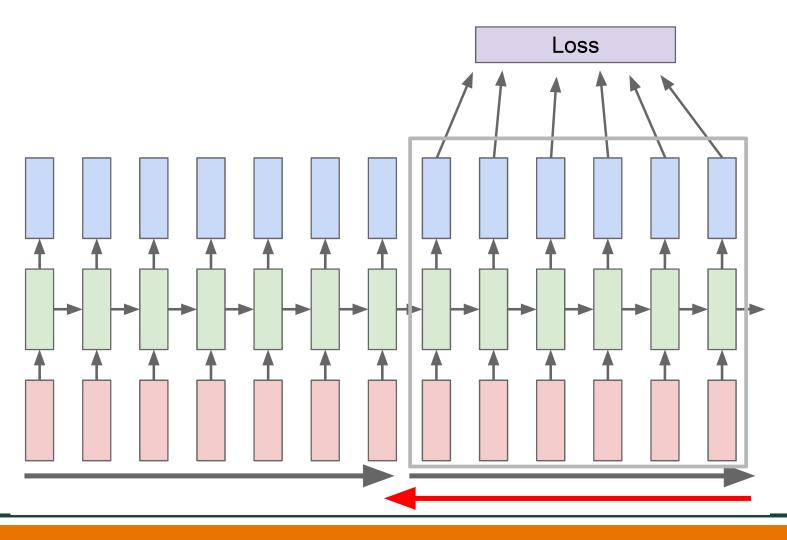


Truncated Backpropagation through Time



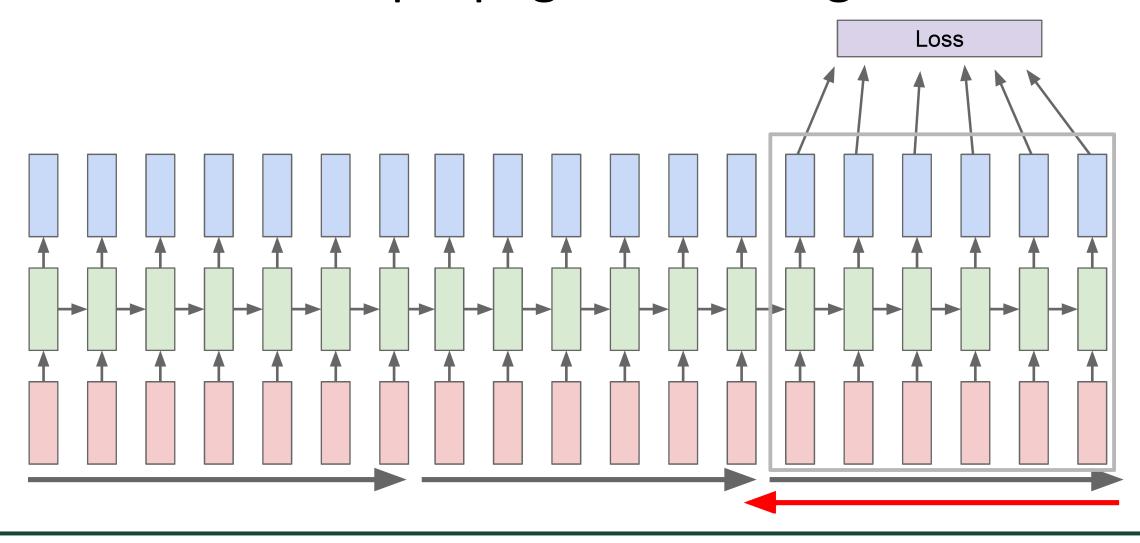
Run forward and backward through chunks of the sequence instead of whole sequence

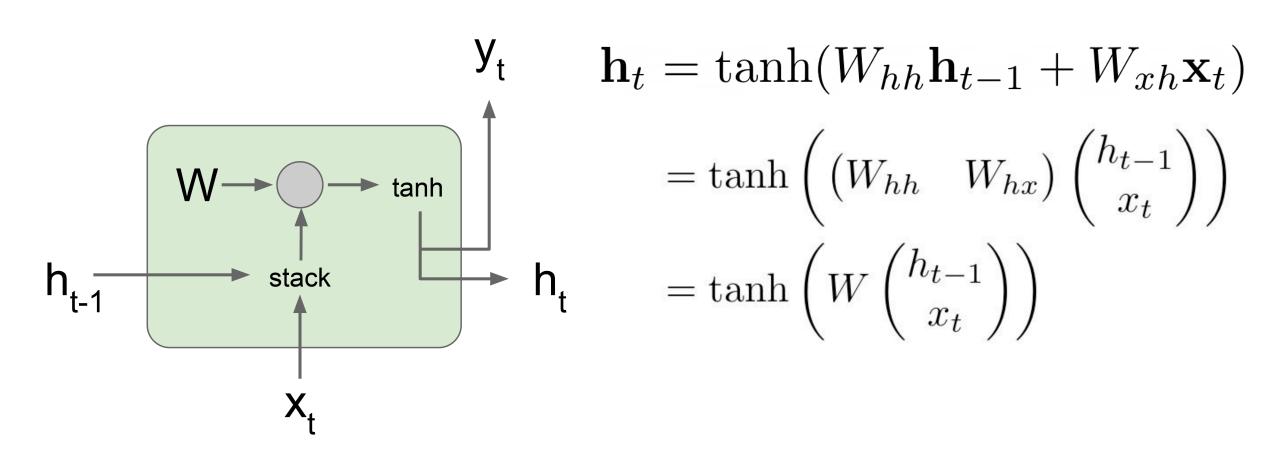
Truncated Backpropagation through Time

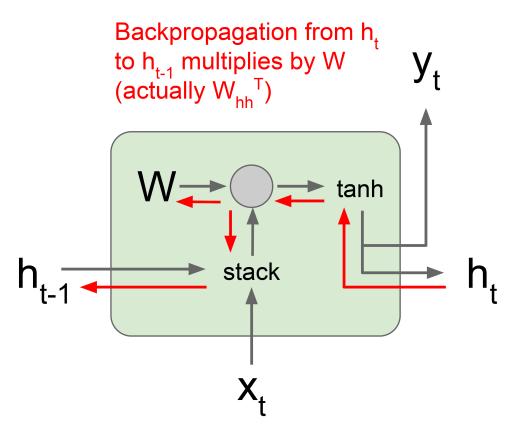


Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through Time





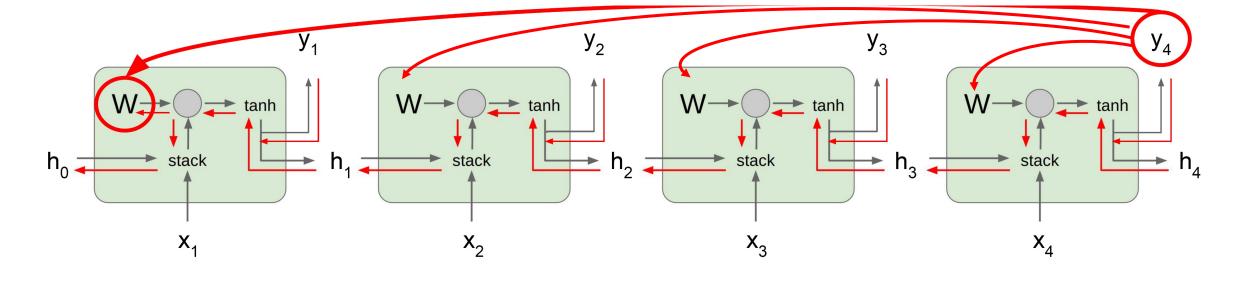


$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

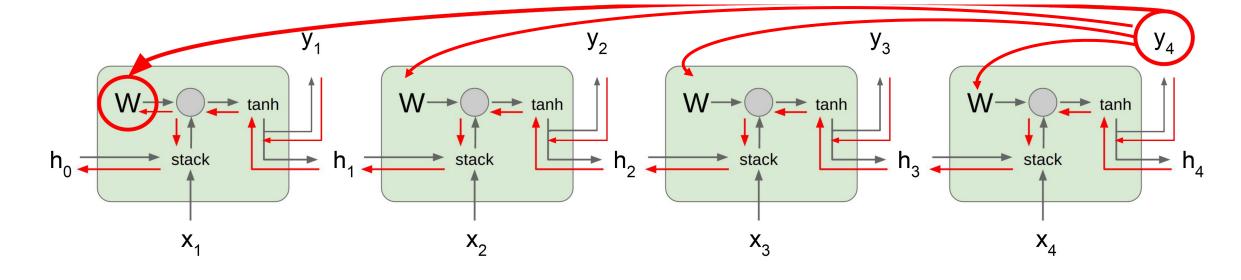
$$= \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$rac{\partial h_t}{\partial h_{t-1}} = tanh'(W_{hh}h_{t-1} + W_{xh}x_t)W_{hh}$$



$$rac{\partial L}{\partial W} = \sum_{t=1}^{T} rac{\partial L_t}{\partial W}$$

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \dots \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} (\prod_{t=2}^T \frac{\partial h_t}{\partial h_{t-1}}) \frac{\partial h_1}{\partial W}$$



$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} (\prod_{t=2}^T rac{\partial h_t}{\partial h_{t-1}}) rac{\partial h_1}{\partial W}$$

https://en.wikipedia.org/wiki/Matrix_norm

Vanishing gradients

$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 < 1$$

Exploding gradients

$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 > 1$$

Exploding gradients

$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 > 1$$

Gradient clipping

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```

Vanishing gradients

$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 < 1$$

Change RNN architecture

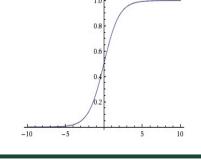
Long Short Term Memory (LSTM)

Vanilla RNN

$$h_t = \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

Sigmoid

$$\sigma(x) = 1/(1 + e^{-x})$$



LSTM

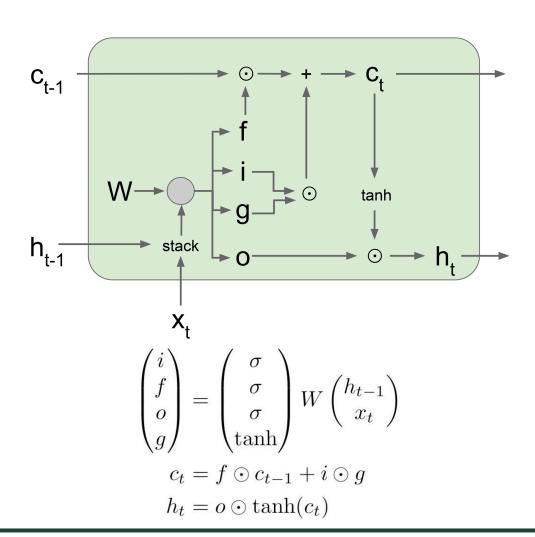
$$h_t = \tanh\left(W\begin{pmatrix}h_{t-1}\\x_t\end{pmatrix}\right) \qquad \text{forget gate} \\ \text{output gate} \\ \text{option} \\ \text{output gate} \\ \text{option} \\ \text{option}$$

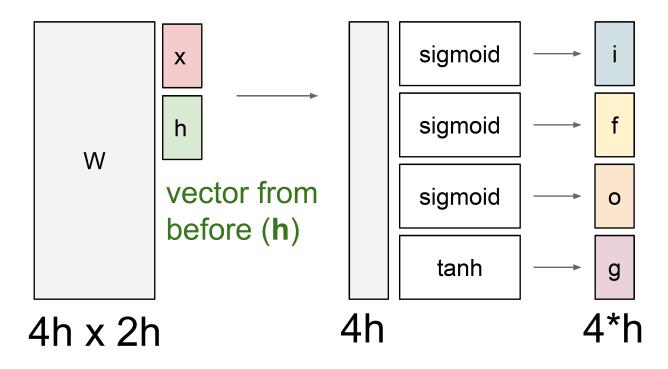
Cell
$$c_t = f \odot c_{t-1} + i \odot g$$

Hidden state
$$h_t = o \odot anh(c_t)$$

Store Cell and hidden states

Long Short Term Memory (LSTM)





- **g**: update, how much to write to cell
- i: Input gate, whether to write to cell
- **f**: Forget gate, whether to erase cell
- o: Output gate, how much to reveal cell

Long Short Term Memory (LSTM)

Make the RNN easier to preserve information over many steps

- E.g., f = 1 and i = 0
- This is difficult for vanilla RNN

LSTM does not guarantee that there is no vanishing or exploding gradient

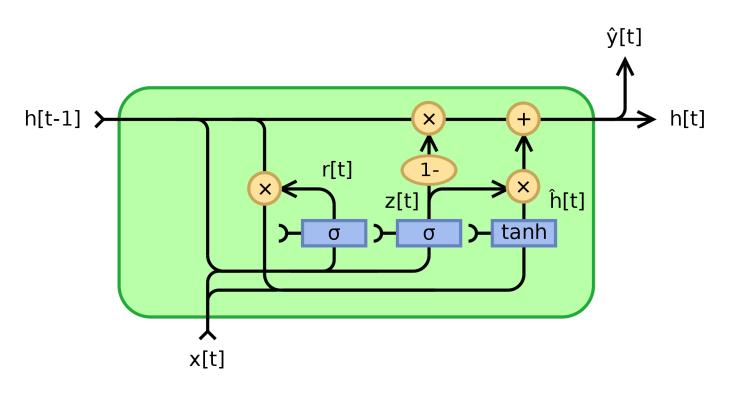
It provides an easier way to learn longdistance dependencies

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Gated Recurrent Unit (GRU)



https://en.wikipedia.org/wiki/Gated_recurrent_unit

$$egin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ \hat{h}_t &= \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h) \ h_t &= (1-z_t) \odot h_{t-1} + z_t \odot \hat{h}_t \end{aligned}$$

- x_t : input vector
- h_t : output vector
- $oldsymbol{\cdot}$ \hat{h}_t : candidate activation vector
- z_t: update gate vector
- r_t: reset gate vector
- ullet W, U and b: parameter matrices and vector

GRUs vs. LSTMs

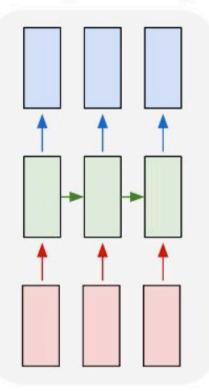
Both have a forget gate

GRU has fewer parameters, no output gate

GRUs have similar performance compared to LSTMs, have shown better performance on certain datasets

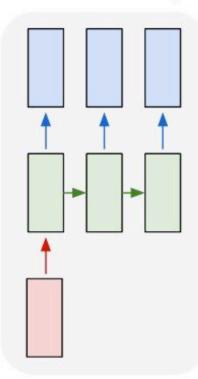
Recurrent Neural Networks

many to many



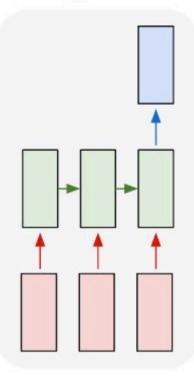
E.g., action recognition on video frames

one to many



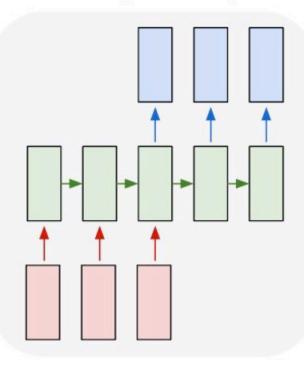
E.g., image captioning, image -> sequences of words

many to one

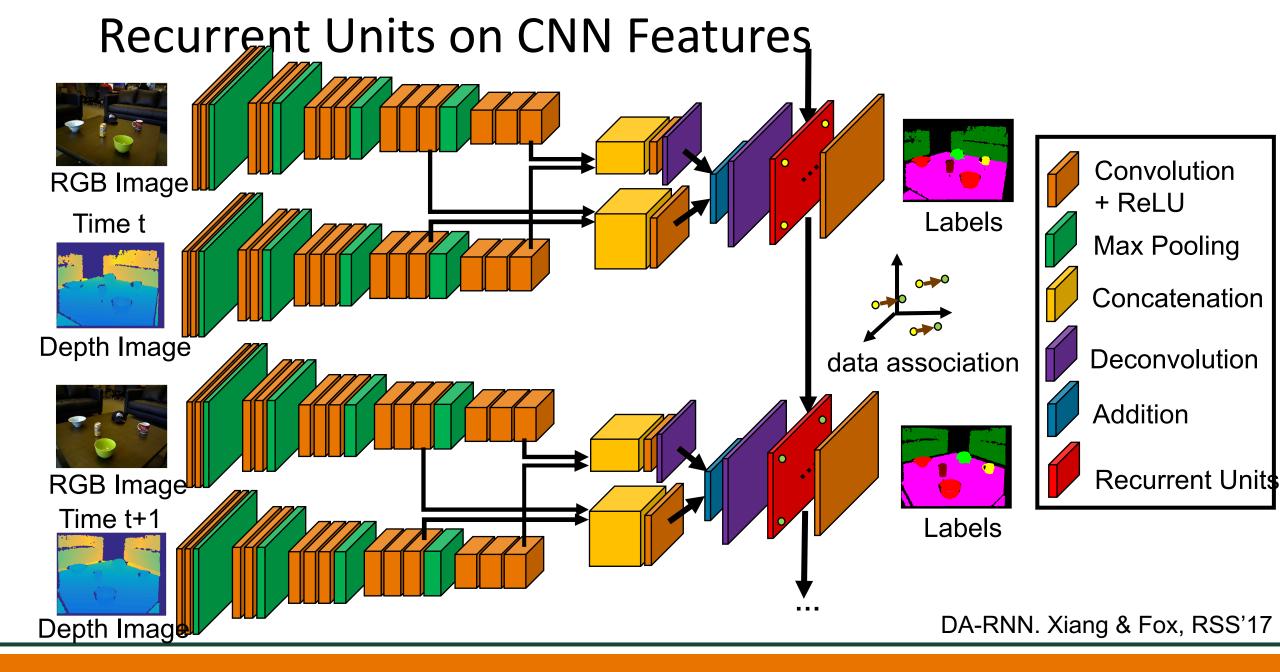


E.g., action prediction,sequences of frames -action class

many to many



E.g., Video Captioning Sequence of video frames -> caption



Summary

RNNs can be used for sequential data to capture dependencies in time

LSTMs and GRUs are better then vanilla RNNs

It is difficult to capture long-term dependencies in RNNs

Use transformers (next lecture)

Further Reading

Deep Learning Textbook: Sequence Modeling: Recurrent and Recursive Nets https://www.deeplearningbook.org/contents/rnn.html

Stanford CS231n, lecture 10, Recurrent Neural Networks http://cs231n.stanford.edu/

Long Short Term Memory

https://www.researchgate.net/publication/13853244 Long Short-term Memory

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Units https://arxiv.org/pdf/1412.3555.pdf