Structure from Motion and SLAM

CS 6384 Computer Vision
Professor Yapeng Tian
Department of Computer Science

How to Recover the 3D World from Images?

Structure from Motion (SfM)

- Structure: the geometry of the 3D world
- Motion: camera motion
- Input: a set of images (no need to be videos)
- From computer vision

Simultaneous Localization and Mapping (SLAM)

- Localization: camera pose
- Mapping: build the geometry of the 3D world
- Input: video sequences
- From robotics

Point cloud captured on an Ouster OS1-128 digital lidar sensor

Triangulation

Idea: using images from different views and feature matching

Triangulation from pixel correspondences to compute 3D location

Intersection of two backprojected lines

$$
\mathrm{X}=1 \times \mathrm{l}^{\prime}
$$

R, T What if unknow camera pose?

Structure from Motion

Input

- A set of images from different views

Output

- 3D Locations of all feature points in a world frame
- Camera poses of the images

Structure from motion

Structure from Motion

Minimize sum of squared reprojection errors

$$
g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} \cdot\|\underbrace{\| \mathbf{P}\left(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)}_{\begin{array}{c}
\text { predicted } \\
\text { mage location }
\end{array}}-\underbrace{\left[\begin{array}{l}
u_{i, j} \\
v_{i, j}
\end{array}\right]}_{\begin{array}{c}
\text { observer } \\
\text { image location }
\end{array}}\|^{2}
$$

Indicator variable:
is point i visible in image j ?
Projection

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\mathbf{R x}+\mathbf{t} \quad \begin{gathered}
u^{\prime}=f_{x} \frac{x^{\prime}}{z^{\prime}}+p_{x} \\
v^{\prime}=f_{y} \frac{y^{\prime}}{z^{\prime}}+p_{y}
\end{gathered} \quad\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\mathbf{P}(\mathbf{x}, \mathbf{R}, \mathbf{t})
$$

Structure from Motion

How to minimize

$$
g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} \cdot\left\|\mathbf{P}\left(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)-\left[\begin{array}{l}
u_{i, j} \\
v_{i, j}
\end{array}\right]\right\|^{2}
$$

A non-linear least squares problem (why?)

- E.g. Levenberg-Marquardt

The Levenberg-Marquardt Algorithm

Nonlinear least squares $\hat{\boldsymbol{\beta}} \in \operatorname{argmin}_{\boldsymbol{\beta}} S(\boldsymbol{\beta}) \equiv \operatorname{argmin}_{\boldsymbol{\beta}} \sum_{i=1}^{m}\left[y_{i}-f\left(x_{i}, \boldsymbol{\beta}\right)\right]^{2}$
An iterative algorithm

- Start with an initial guess β_{0}
- For each iteration $\beta \leftarrow \beta+\delta$

How to get δ ?

- Linear approximation $f\left(x_{i}, \boldsymbol{\beta}+\boldsymbol{\delta}\right) \approx f\left(x_{i}, \boldsymbol{\beta}\right)+\mathbf{J}_{i} \boldsymbol{\delta} \quad \mathbf{J}_{i}=\frac{\partial f\left(x_{i}, \boldsymbol{\beta}\right)}{\partial \boldsymbol{\beta}}$
- Find to δ minimize the objective $\quad S(\boldsymbol{\beta}+\boldsymbol{\delta}) \approx \sum_{i=1}^{m}\left[y_{i}-f\left(x_{i}, \boldsymbol{\beta}\right)-\mathbf{J}_{i} \boldsymbol{\delta}\right]^{2}$

The Levenberg-Marquardt Algorithm

Vector notation for

$$
S(\boldsymbol{\beta}+\boldsymbol{\delta}) \approx \sum_{i=1}^{m}\left[y_{i}-f\left(x_{i}, \boldsymbol{\beta}\right)-\mathbf{J}_{i} \boldsymbol{\delta}\right]^{2}
$$

$$
\begin{aligned}
& S(\boldsymbol{\beta}+\boldsymbol{\delta}) \approx\|\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})-\mathbf{J} \boldsymbol{\delta}\|^{2} \\
& =[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})-\mathbf{J} \boldsymbol{\delta}]^{\mathrm{T}}[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})-\mathbf{J} \boldsymbol{\delta}] \\
& =[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]^{\mathrm{T}}[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]-[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]^{\mathrm{T}} \mathbf{J} \boldsymbol{\delta}-(\mathbf{J} \boldsymbol{\delta})^{\mathrm{T}}[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]+\boldsymbol{\delta}^{\mathrm{T}} \mathbf{J}^{\mathrm{T}} \mathbf{J} \boldsymbol{\delta} \\
& =[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]^{\mathrm{T}}[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]-2[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]^{\mathrm{T}} \mathbf{J} \boldsymbol{\delta}+\boldsymbol{\delta}^{\mathrm{T}} \mathbf{J}^{\mathrm{T}} \mathbf{J} \boldsymbol{\delta} .
\end{aligned}
$$

Take derivation with respect to δ and set to zero $\left(\mathbf{J}^{\mathrm{T}} \mathbf{J}\right) \boldsymbol{\delta}=\mathbf{J}^{\mathrm{T}}[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})]$

Levenberg's contribution $\left(\mathbf{J}^{\mathrm{T}} \mathbf{J}+\lambda \mathbf{I}\right) \boldsymbol{\delta}=\mathbf{J}^{\mathrm{T}}[\mathbf{y}-\mathbf{f}(\boldsymbol{\beta})] \quad$ damped version

$$
\beta \leftarrow \beta+\delta
$$

Structure from Motion

$$
=
$$

$$
\beta=(\mathbf{X}, \mathbf{R}, \mathbf{T})
$$

How to get the initial estimation β_{0} ?

Random guess is not a good idea.

Matching Two Views

Fundamental matrix

\mathbf{X}^{\prime} is on the epiploar line $\mathbf{1}^{\prime}=F \mathbf{x}$

$$
\begin{aligned}
& \mathbf{x}^{\prime T} F \mathbf{x}=0 \\
& {\left[\begin{array}{lll}
x_{i}^{\prime} & y_{i}^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]=0} \\
& x_{i} x_{i}^{\prime} f_{11}+x_{i} y_{i}^{\prime} f_{21}+x_{i} f_{31}+y_{i} x_{i}^{\prime} f_{12}+y_{i} y_{i}^{\prime} f_{22}+y_{i} f_{32}+x_{i}^{\prime} f_{13}+y_{i}^{\prime} f_{23}+f_{33}=0
\end{aligned}
$$

Matching Two Views

$$
\mathbf{x}^{\prime T} F \mathbf{x}=0
$$

If we know camera intrinsics in SfM

$$
\left(K^{\prime-1} \mathbf{x}^{\prime}\right)^{T} E\left(K^{-1} \mathbf{x}\right)=0
$$

Normalized coordinates

$$
F=K^{\prime-T} E K^{-1}
$$

Essential matrix E

$$
E=K^{\prime T} F K
$$

Matching Two Views

Recover the relative pose R and \boldsymbol{t} from the essential matrix E up to the scale of \boldsymbol{t}

$$
\begin{gathered}
\mathrm{F}=\left[\mathbf{e}^{\prime}\right]_{\times} \mathrm{K}^{\prime} \mathrm{RK}^{-1}=\mathrm{K}^{\prime-\mathrm{T}}[\mathbf{t}]_{\times} \mathrm{RK}^{-1} \\
E=K^{\prime T} F K \\
\mathrm{E}=[\mathbf{t}]_{\times} \mathrm{R}
\end{gathered}
$$

Credit: Thomas Opsahl
H. C Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, 1981

Matching Two Views

$$
\mathrm{E}=[\mathbf{t}]_{\times} \mathrm{R}
$$

$$
\begin{aligned}
E \cdot \mathbf{t} & =[\mathbf{t}]_{\times} R \cdot \mathbf{t} \\
& =(\mathbf{t} \times R) \cdot \mathbf{t}=0
\end{aligned}
$$

Use SVD to solve for t

$$
R=-[\mathbf{t}]_{\times} E
$$

Credit: Thomas Opsahl
H. C Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, 1981

Triangulation

Intersection of two backprojected lines

Estimated from essential matrix E
How to get the initial estimation β_{0} ? $\beta=(\mathbf{X}, \mathbf{R}, \mathbf{T})$

Structure from Motion

Bundle adjustment

- Iteratively refinement of structure (3D points) and motion (camera poses)
- Levenberg-Marquardt algorithm

Build Rome in One Day

https://grail.cs.washington.edu/rome/
U[D the university of texas at dallas

Simultaneous Localization and Mapping (SLAM)

Localization: camera pose tracking
Mapping: building a 2D or 3D representation of the environment The goal here is the same as structure from motion but with video input

ORB-SLAM2

- Point cloud and camera poses

Case Study: ORB-SLAM

- Oriented FAST and Rotated BRIEF (ORB)
- Tracking camera poses
- Motion only Bundle Adjustment (BA)
- Mapping
- Local BA around camera pose (3D location refinement)
- Loop closing
- Loop detection

https://webdiis.unizar.es/~raulmur/orbslam/

Case Study: ORB-SLAM

RGB-D SLAM

RGB-D cameras

Microsoft Kinect

Intel RealSense

Using depth images: 3D points in the camera frame

Point Cloud

RGB-D SLAM

Camera pose tracking

- Iterative closest point (ICP) algorithm

Input: source point cloud, target point cloud Output: rigid transformation from source to target

- For i in range(N)
- For each point in the source, find the closest point in the target (correspondences)
- Estimation R and T using the correspondences
- Transform the source points using R and T

RGB-D SLAM

Mapping: fuse point clouds into a global frame
Map representation

Point clouds
ORB-SLAM

Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera. Huang, et al. 2011

Surfels (small 3D surface)
ElasticFusion

KinectFusion

Further Reading

Chapter 11, Computer Vision, Richard Szeliski

KinectFusion: Real-Time Dense Surface Mapping and Tracking. Newcombe et al., ISMAR'11

ORB-SLAM https://webdiis.unizar.es/~raulmur/orbslam/

