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Visual Rendering

* Converting 3D scene descriptions into 2D images
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* The graphics pipeline
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Rasterization
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Pixels vs. Fragments

* Pixels are dots on the screen: (x, y) and RGB color

* Fragments: (x, v, z), z is the depth and other attributes (color, normal,
texture coordinates, alpha value, etc.)
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Rasterization

* Determine which fragments are inside the triangle
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Barycentric Coordinates

241

Interpolate attributes of the vertices
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Barycentric Coordinates

P = Q1Pp1 + QiaP2 + Q3P3
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Depth Buffer for Visibility Testing

* When drawing multiple triangles, determine which one to draw and
which one to discard

* If depth of fragment is smaller than the current value is the depth
buffer, overwrite color and depth value using the current fragment

color buffer depth buffer
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Lighting and Shading

* How to determine color and what attributes to interpolate after
rasterization
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Basic Behavior of Light

* Light can be described in three ways

e Photons: tiny particles of energy moving through
space at high speed

* Waves: ripples through space

e Rays: a ray traces the motion of a single
hypothetical photon




Interactions with Materials
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Wavelengths and Colors
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Reflection of Materials

* We see objects with different colors because the materials reflect
specific colors differently
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La m be rtia N nghtl ﬂg Diffuse reflection
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Blinn-Phong Lighting
Related to specular reflection
L+
1€+ |

Material property that expresses
Q x the amount of surface shininess

x=100, mild amount of shininess
x=10000, almost like a mirror 0.991900° — 9 94-44
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Ambient Lighting
* Independent of light/surface position, viewer, normal

* Adding some background color
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Multiple Light Sources and Attenuation
* N light sources
N
L=1L,+ Z dl; max(0,n - ;) + sl; max(0,n - b;)*
i=1
e Attenuation: the greater the distance, the low the intensity
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/ / \ C Light source distance to surface
Used by OpenGL for ~25 years

constant linear  quadratic attenuation




Phong Reflection Model

Ambient + Diffuse Specular = Phong Reflection
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Lighting Calculations

* All lighting calculations can happen in camera/view space
* Transform vertices and normal into camera/view space

e Calculate lighting, i.e., compute vertex color given material properties, light
source color and position, vertex position, normal position, view position

. light
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Lighting vs. Shading

* Lighting: interaction between light and surface
e Different mathematic models exist, e.g., Phong lighting model
* What formula is being used to calculate intensity/color

* Shading: how to compute color for each fragment
 What attributes to interpolate
* Where to do lighting calculation




Flat Shading

 Compute color only once per triangle (i.e., with Phong lighting)
 Compute color for the first vertex or the centroid

* Pro: fast to compute

* Con: create a flat, unrealistic appearance
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Gouraud or Per-vertex Shading

 Compute color only once per vertex (i.e., with Phong lighting)

* Interpolate per-vertex color to all fragments within the triangle
* Pro: fast to compute

e Con: flat, unrealistic specular highlights

mterpolate colors /—l\

per-vertex lighting shaded surface




Gouraud or Per-vertex Shading




Phong Shading or Per-fragment Shading

 Compute color only once per fragment (i.e., with Phong lighting)

* Need to interpolate per-vertex normal to all fragments to do the
lighting calculation

* Pro: better appearance of specular highlights
* Con: slower to compute
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per-fragment lighting




Shading

Flat Shading Gouraud Shading Phong Shading

http://www.decew.net/OSS/timeline.php
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Shader
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Shader

* Shaders are small programs that are executed in parallel on GPUs for
each vertex (vertex shader) or each fragment (fragment shader)

 VVertex shader (before rasterization)

 Modelview projection transform of vertex and normal
* If per-vertex lighting, compute lighting for each vertex

* Fragment shader (after rasterization)

* If per-vertex lighting, assign color to each fragment
* If per-fragment lighting, compute lighting for each fragment




Texture Mapping

* Map textures (2D images) to 3D models

Without texture
* Need to specify vertex colors

With texture
e Vertex colors from texture




Texture Mapping

e UV coordinates (normalized)




Texture Mapping

e Same texture, different UV coordinates for mapping

Texture Coordinates Rendered Triangle Texture Coordinates Rendered Triangle




Texture Mapping

» Texture filtering: the resolution of the texture image is different from
the displayed fragment

* Magnification
* Minification
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Texture Mapping

» Texture filtering: the resolution of the texture image is different from
the displayed fragment

 Minification
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Texture Mapping




Review of the Graphics Pipeline

Transformed
Raw Vertices Vertices & Processed

& Primitives Primitives Fragments Fragments

Pixels Display

Vertex Fragment o
o /‘ Processor L_ / Rasterizer p Processor e/ Merging 1 /
(Programmable) (Programmable)
A 3D ,/:g\‘?»D A ",:é\c\)?D 2D array of
/00000'. /00000, golor-values
""" LAY TR,
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* Vertex transforms * Texturing of all primitives into 2D
e Per-vertex lighting * Per-fragment lighting color-pixel for display




Further Reading

e Section 7.2, 7.1, Virtual Reality, Steven LaValle

* 3D graphics with OpenGL, Basic Theory
https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG B
asicsTheory.html

e Stanford EE267, Virtual Reality, Lecture 3
https://stanford.edu/class/ee267/syllabus.html



https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html
https://stanford.edu/class/ee267/syllabus.html

