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A lot of slides of course lectures borrowed from Professor Yu Xiang’s VR class



Visual Rendering

• Converting 3D scene descriptions into 2D images

• The graphics pipeline
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Rasterization
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Vertex transforms
• Determine which pixels 

are inside the triangles
• Interpolate vertex 

attributes (e.g., color)
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Pixels vs. Fragments

• Pixels are dots on the screen: (x, y) and RGB color
• Fragments: (x, y, z), z is the depth and other attributes (color, normal, 

texture coordinates, alpha value, etc.)
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Rasterization

• Determine which fragments are inside the triangle
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p is inside if and only if

magnitude of the cross products
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Barycentric Coordinates
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Interpolate attributes of the vertices
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Barycentric Coordinates
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Apply to other attributes, e.g., depth, texture coordinates

Color
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Depth Buffer for Visibility Testing

• When drawing multiple triangles, determine which one to draw and 
which one to discard
• If depth of fragment is smaller than the current value is the depth 

buffer, overwrite color and depth value using the current fragment
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Lighting and Shading

• How to determine color and what attributes to interpolate after 
rasterization 
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Rasterization: determine which 
fragments are inside the triangles
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Basic Behavior of Light

• Light can be described in three ways
• Photons: tiny particles of energy moving through 

space at high speed

• Waves: ripples through space

• Rays: a ray traces the motion of a single 
hypothetical photon
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Interactions with Materials

119/14/2021 Yapeng Tian



Wavelengths and Colors
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Wavelength
Speed

Frequency
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Reflection of Materials

• We see objects with different colors because the materials reflect 
specific colors differently
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Lambertian Lighting
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Reflectance property of 
the material (triangle)

Spectral power distribution 
of the light source

Light behind triangle

Diffuse reflection

View position

Think about this point as 
a vertex of a 3D mesh.
We want to compute its 
color on the image
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Blinn-Phong Lighting
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Related to specular reflection

Material property that expresses 
the amount of surface shininess

Specular reflectance 
property of the material “mirror”

x=100, mild amount of shininess
x=10000, almost like a mirror



Ambient Lighting

• Independent of light/surface position, viewer, normal

• Adding some background color
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Ambient light
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Multiple Light Sources and Attenuation

• N light sources

• Attenuation: the greater the distance, the low the intensity
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constant linear quadratic attenuation

Light source distance to surface

Used by OpenGL for ~25 years



Phong Reflection Model
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Lighting Calculations

• All lighting calculations can happen in camera/view space
• Transform vertices and normal into camera/view space

• Calculate lighting, i.e., compute vertex color given material properties, light 
source color and position, vertex position, normal position, view position
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View position
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Lighting vs. Shading

• Lighting: interaction between light and surface
• Different mathematic models exist, e.g., Phong lighting model
• What formula is being used to calculate intensity/color

• Shading: how to compute color for each fragment
• What attributes to interpolate
• Where to do lighting calculation
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Flat Shading

• Compute color only once per triangle (i.e., with Phong lighting)
• Compute color for the first vertex or the centroid

• Pro: fast to compute

• Con: create a flat, unrealistic appearance
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Gouraud or Per-vertex Shading

• Compute color only once per vertex (i.e., with Phong lighting)
• Interpolate per-vertex color to all fragments within the triangle
• Pro: fast to compute
• Con: flat, unrealistic specular highlights
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Gouraud or Per-vertex Shading
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Phong Shading or Per-fragment Shading

• Compute color only once per fragment (i.e., with Phong lighting)
• Need to interpolate per-vertex normal to all fragments to do the 

lighting calculation
• Pro: better appearance of specular highlights
• Con: slower to compute

249/14/2021 Yapeng Tian



Shading
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Shader
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Vertex shader
• Lighting computation 

for each vertex

Fragment shader
• Lighting computation 

for each fragment
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Shader

• Shaders are small programs that are executed in parallel on GPUs for 
each vertex (vertex shader) or each fragment (fragment shader)

• Vertex shader (before rasterization)
• Modelview projection transform of vertex and normal
• If per-vertex lighting, compute lighting for each vertex

• Fragment shader (after rasterization)
• If per-vertex lighting, assign color to each fragment
• If per-fragment lighting, compute lighting for each fragment
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Texture Mapping

• Map textures (2D images) to 3D models
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Without texture
• Need to specify vertex colors

With texture
• Vertex colors from texture
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Texture Mapping

• UV coordinates (normalized)
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Texture Mapping

• Same texture, different UV coordinates for mapping
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Texture Mapping

• Texture filtering: the resolution of the texture image is different from 
the displayed fragment
• Magnification
• Minification
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Texture Mapping

• Texture filtering: the resolution of the texture image is different from 
the displayed fragment
• Minification
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Texture Mapping

339/14/2021 Yapeng Tian



Review of the Graphics Pipeline
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Vertex shader
• Vertex transforms 
• Per-vertex lighting

Fragment shader
• Texturing
• Per-fragment lighting

Combine the fragments 
of all primitives into 2D 
color-pixel for display
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Further Reading

• Section 7.2, 7.1, Virtual Reality, Steven LaValle

• 3D graphics with OpenGL, Basic Theory 
https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_B
asicsTheory.html

• Stanford EE267, Virtual Reality, Lecture 3 
https://stanford.edu/class/ee267/syllabus.html
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https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html
https://stanford.edu/class/ee267/syllabus.html

