
Visual Rendering: Rasterization, Lighting 
and Shading, Fragment Processing

CS 6334 Virtual Reality
Professor Yapeng Tian

The University of Texas at Dallas

9/14/2021 Yapeng Tian 1

A lot of slides of course lectures borrowed from Professor Yu Xiang’s VR class



Visual Rendering

• Converting 3D scene descriptions into 2D images

• The graphics pipeline

29/14/2021 Yapeng Tian



Rasterization

3

Vertex transforms
• Determine which pixels 

are inside the triangles
• Interpolate vertex 

attributes (e.g., color)

9/14/2021 Yapeng Tian



Pixels vs. Fragments

• Pixels are dots on the screen: (x, y) and RGB color
• Fragments: (x, y, z), z is the depth and other attributes (color, normal, 

texture coordinates, alpha value, etc.)

49/14/2021 Yapeng Tian



Rasterization

• Determine which fragments are inside the triangle

5

p is inside if and only if

magnitude of the cross products

9/14/2021 Yapeng Tian



Barycentric Coordinates

6

Interpolate attributes of the vertices

9/14/2021 Yapeng Tian



Barycentric Coordinates

7

Apply to other attributes, e.g., depth, texture coordinates

Color

9/14/2021 Yapeng Tian



Depth Buffer for Visibility Testing

• When drawing multiple triangles, determine which one to draw and 
which one to discard
• If depth of fragment is smaller than the current value is the depth 

buffer, overwrite color and depth value using the current fragment

89/14/2021 Yapeng Tian



Lighting and Shading

• How to determine color and what attributes to interpolate after 
rasterization 

9

Rasterization: determine which 
fragments are inside the triangles

9/14/2021 Yapeng Tian



Basic Behavior of Light

• Light can be described in three ways
• Photons: tiny particles of energy moving through 

space at high speed

• Waves: ripples through space

• Rays: a ray traces the motion of a single 
hypothetical photon

109/14/2021 Yapeng Tian



Interactions with Materials

119/14/2021 Yapeng Tian



Wavelengths and Colors

12

Wavelength
Speed

Frequency

9/14/2021 Yapeng Tian



Reflection of Materials

• We see objects with different colors because the materials reflect 
specific colors differently

139/14/2021 Yapeng Tian



Lambertian Lighting

14

Reflectance property of 
the material (triangle)

Spectral power distribution 
of the light source

Light behind triangle

Diffuse reflection

View position

Think about this point as 
a vertex of a 3D mesh.
We want to compute its 
color on the image

9/14/2021 Yapeng Tian



Blinn-Phong Lighting

9/14/2021 Yapeng Tian 15

Related to specular reflection

Material property that expresses 
the amount of surface shininess

Specular reflectance 
property of the material “mirror”

x=100, mild amount of shininess
x=10000, almost like a mirror



Ambient Lighting

• Independent of light/surface position, viewer, normal

• Adding some background color

16

Ambient light

9/14/2021 Yapeng Tian



Multiple Light Sources and Attenuation

• N light sources

• Attenuation: the greater the distance, the low the intensity

9/14/2021 Yapeng Tian 17

constant linear quadratic attenuation

Light source distance to surface

Used by OpenGL for ~25 years



Phong Reflection Model

189/14/2021 Yapeng Tian



Lighting Calculations

• All lighting calculations can happen in camera/view space
• Transform vertices and normal into camera/view space

• Calculate lighting, i.e., compute vertex color given material properties, light 
source color and position, vertex position, normal position, view position

19

View position

9/14/2021 Yapeng Tian



Lighting vs. Shading

• Lighting: interaction between light and surface
• Different mathematic models exist, e.g., Phong lighting model
• What formula is being used to calculate intensity/color

• Shading: how to compute color for each fragment
• What attributes to interpolate
• Where to do lighting calculation

209/14/2021 Yapeng Tian



Flat Shading

• Compute color only once per triangle (i.e., with Phong lighting)
• Compute color for the first vertex or the centroid

• Pro: fast to compute

• Con: create a flat, unrealistic appearance

219/14/2021 Yapeng Tian



Gouraud or Per-vertex Shading

• Compute color only once per vertex (i.e., with Phong lighting)
• Interpolate per-vertex color to all fragments within the triangle
• Pro: fast to compute
• Con: flat, unrealistic specular highlights

229/14/2021 Yapeng Tian



Gouraud or Per-vertex Shading

239/14/2021 Yapeng Tian



Phong Shading or Per-fragment Shading

• Compute color only once per fragment (i.e., with Phong lighting)
• Need to interpolate per-vertex normal to all fragments to do the 

lighting calculation
• Pro: better appearance of specular highlights
• Con: slower to compute

249/14/2021 Yapeng Tian



Shading

259/14/2021 Yapeng Tian



Shader

26

Vertex shader
• Lighting computation 

for each vertex

Fragment shader
• Lighting computation 

for each fragment

9/14/2021 Yapeng Tian



Shader

• Shaders are small programs that are executed in parallel on GPUs for 
each vertex (vertex shader) or each fragment (fragment shader)

• Vertex shader (before rasterization)
• Modelview projection transform of vertex and normal
• If per-vertex lighting, compute lighting for each vertex

• Fragment shader (after rasterization)
• If per-vertex lighting, assign color to each fragment
• If per-fragment lighting, compute lighting for each fragment

279/14/2021 Yapeng Tian



Texture Mapping

• Map textures (2D images) to 3D models

28

Without texture
• Need to specify vertex colors

With texture
• Vertex colors from texture

9/14/2021 Yapeng Tian



Texture Mapping

• UV coordinates (normalized)

299/14/2021 Yapeng Tian



Texture Mapping

• Same texture, different UV coordinates for mapping

309/14/2021 Yapeng Tian



Texture Mapping

• Texture filtering: the resolution of the texture image is different from 
the displayed fragment
• Magnification
• Minification

319/14/2021 Yapeng Tian



Texture Mapping

• Texture filtering: the resolution of the texture image is different from 
the displayed fragment
• Minification

329/14/2021 Yapeng Tian



Texture Mapping

339/14/2021 Yapeng Tian



Review of the Graphics Pipeline

34

Vertex shader
• Vertex transforms 
• Per-vertex lighting

Fragment shader
• Texturing
• Per-fragment lighting

Combine the fragments 
of all primitives into 2D 
color-pixel for display

9/14/2021 Yapeng Tian



Further Reading

• Section 7.2, 7.1, Virtual Reality, Steven LaValle

• 3D graphics with OpenGL, Basic Theory 
https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_B
asicsTheory.html

• Stanford EE267, Virtual Reality, Lecture 3 
https://stanford.edu/class/ee267/syllabus.html

359/14/2021 Yapeng Tian

https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html
https://stanford.edu/class/ee267/syllabus.html

