Visual Rendering: Rasterization, Lighting
and Shading, Fragment Processing

CS 6334 Virtual Reality
Professor Yapeng Tian
The University of Texas at Dallas

A lot of slides of course lectures borrowed from Professor Yu Xiang’s VR class

From Computer Desktop Encyclopedia
Reprinted with permission.
@ 1998 Intergraph Computer Systems

Visual Rendering

* Converting 3D scene descriptions into 2D images

viewing
frustrum

* The graphics pipeline

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels Display
Vertex Fragment i
Processor Rasterizer Processor “ p.u l
(Programmable) (Programmable) ()
3D :'.5\.30 ,’.\5\30 2D array of
/ 0@+ / 900 -
"-.2’..} /00000, color-values

Rasterization

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels Display
Vertex Fragment Outout
P Processor / Rasterizer / Processor / M: pl: l)
(Programmable) (Programmable) rging
N ’,':\é\.3D ',':2\6 3D 2D array of
/ N ’ . \\ -
00000 - /80000 color-values
Rasterizer /@@ 3D * Determine which pixels
(XX .. .
Vertex transforms ~ eeeew are inside the triangles
‘00000
e ey * Interpolate vertex

A fragment is aligned to the
pixel-grid with a depth

A primitive is formed by
one or more vertices.
Vertices are not aligned
to the pixel-grid

attributes (e.g., color)

Pixels vs. Fragments

* Pixels are dots on the screen: (x, y) and RGB color

* Fragments: (x, v, z), z is the depth and other attributes (color, normal,
texture coordinates, alpha value, etc.)

roN i N Output Mergin
/, . Rasterizer ’,'. @ 3D P ging .
’I ‘\\?)D 7 ’ . . .\ »
J \ 00000
¢ N ‘en000 >
"‘“---:. e X)

A primitive is formed by Grid-aligned fragments are All primitives are
one or more vertices. interpolated from vertices. merged to produce 2D
Vertices are not grid- pixels on the display

aligned

Vertex, Primitives, Fragment and Pixel

Rasterization

* Determine which fragments are inside the triangle

v, €1 = P2 — D1

©o om0 o o o e €3 = P1 — P3

.

/

\

© 7 © \(\) © © PL - pisinside if and only if
\

A N (p—p1) xe1 <0
céQ O O o o €3 _
po T T === 3 A (p—p2) X ea <0
® o o o o o, o (p—p3) X ez <0

magnitude of the cross products

Barycentric Coordinates

241

Interpolate attributes of the vertices

P = Q1Pp1 + QiaP2 + Q3P3

0 < aq,a,a3 < 1

051—|—O£2—|—043:1

_ (2 = ¥3)(x = x3) + (x3 = x2)(¥ = ¥3)
(V2 = y3)(x1 = x3) + (%3 = x2)(y1 = 3)
_ (3 = y1)(x = x3) + (x1 = x3)(¥ = ¥3)
(V2 = y3)(x1 = x3) + (X3 = x2) ()1 — ¥3)
o =1-0 - as.

25,

Barycentric Coordinates

P = Q1Pp1 + QiaP2 + Q3P3

P2

€1 Color
o R = Olel —+ OZQRQ + OégRg
s G = OélGl T OZQGQ T O{3G3
Ps B = Olel OéQBQ Oéng‘

. Apply to other attributes, e.g., depth, texture coordinates

€2

Depth Buffer for Visibility Testing

* When drawing multiple triangles, determine which one to draw and
which one to discard

* If depth of fragment is smaller than the current value is the depth
buffer, overwrite color and depth value using the current fragment

color buffer depth buffer

9/14/2021 Yapeng Tian

Lighting and Shading

* How to determine color and what attributes to interpolate after
rasterization

\
I . . [[
il g oMo o o Rasterization: determine which
/ \ . . .
ile 106 o oS o o fragments are inside the triangles
/ \

1lodqg_o o o o

A2 ————— 4 A3

Basic Behavior of Light

* Light can be described in three ways

e Photons: tiny particles of energy moving through
space at high speed

* Waves: ripples through space

e Rays: a ray traces the motion of a single
hypothetical photon

Interactions with Materials

Reflection W

/ Specular
Y

/ Absorption

Aansmission
Diftuse

Wavelengths and Colors

@ frequency
wavelength
—>

v Speed
Wavelength \ = —

Frequency

amplitude
—_—%

Electromagnetic spectrum

Radiation type Radio waves | Microwaves Infrared Ultraviolet X-rays Gzra;;r:a
10 nm 0.01 nm

1T mm

Wavelength 30 mm
(approximate)
Visible light

Reflection of Materials

* We see objects with different colors because the materials reflect
specific colors differently

100 T | |
butter

lettuce

380
<
450

o (=] o
G Y8 O8f
n n ©

Reflectance (%)

tomato

| | |
400 500 600 700
Wavelength (nm)

750

La m be rtia N nghtl ﬂg Diffuse reflection

R = dR[R max((), n - E)
G = dglg maX(O, n - E)

View position

.x]ight - B =dglg max((), T - 6)
A PR n-{ = cosd
£ Ao do d Reflectance property of
0 (1y RGH B) the material (triangle)

Spectral power distribution
(IR’ IG’ IB) of the light source

Think about this point as

a vertex of a 3D mesh. L — d[maX(O, n - E) T, - € < 0

We want to compute its Light behind triangle
color on the image

Blinn-Phong Lighting
Related to specular reflection
L+
1€+ |

Material property that expresses
Q x the amount of surface shininess

x=100, mild amount of shininess
x=10000, almost like a mirror 0.991900° — 9 94-44

. light b

S Specular reflectance
property of the material

“mirror”

L =dI max(0,n-¥¢)+ sI max(0,n - b)*

Ambient Lighting
* Independent of light/surface position, viewer, normal

* Adding some background color

L =dI max(0,n-¢)+ sl max(0,n-b)*" + L,

d

Ambient light

Multiple Light Sources and Attenuation
* N light sources
N
L=1L,+ Z dl; max(0,n - ;) + sl; max(0,n - b;)*
i=1
e Attenuation: the greater the distance, the low the intensity

1
L=1L, —I—Zk +klc+kc2<dl max(0,n - ;) + sI; max(0,n - b))

/ / \ C Light source distance to surface
Used by OpenGL for ~25 years

constant linear quadratic attenuation

Phong Reflection Model

Ambient + Diffuse Specular = Phong Reflection

9/14/2021 Yapeng Tian 18

Lighting Calculations

* All lighting calculations can happen in camera/view space
* Transform vertices and normal into camera/view space

e Calculate lighting, i.e., compute vertex color given material properties, light
source color and position, vertex position, normal position, view position

. light

o

-~ View position

Lighting vs. Shading

* Lighting: interaction between light and surface
e Different mathematic models exist, e.g., Phong lighting model
* What formula is being used to calculate intensity/color

* Shading: how to compute color for each fragment
 What attributes to interpolate
* Where to do lighting calculation

Flat Shading

 Compute color only once per triangle (i.e., with Phong lighting)
 Compute color for the first vertex or the centroid

* Pro: fast to compute

* Con: create a flat, unrealistic appearance

9/14/2021 Yapeng Tian 21

Gouraud or Per-vertex Shading

 Compute color only once per vertex (i.e., with Phong lighting)

* Interpolate per-vertex color to all fragments within the triangle
* Pro: fast to compute

e Con: flat, unrealistic specular highlights

mterpolate colors /—l\

per-vertex lighting shaded surface

Gouraud or Per-vertex Shading

Phong Shading or Per-fragment Shading

 Compute color only once per fragment (i.e., with Phong lighting)

* Need to interpolate per-vertex normal to all fragments to do the
lighting calculation

* Pro: better appearance of specular highlights
* Con: slower to compute

>@< nterpolate normais >ﬁ&:_j;:/><
>

per-fragment lighting

Shading

Flat Shading Gouraud Shading Phong Shading

http://www.decew.net/OSS/timeline.php

9/14/2021 Yapeng Tian 25

Shader

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels _ Display
Vertex Fragment
- Output
p Processor / Rasterizer / Processor e/ . [)
Merging
(Programmable) (Programmable)
. . -
A 3D ,":é\‘?'D A /'.5\30 2D array of
/ S / .w\\ -
‘I-...‘...\“ ‘,‘.2.00\\ color-values
Vertex shader Fragment shader
* Lighting computation * Lighting computation
for each vertex for each fragment

Shader

* Shaders are small programs that are executed in parallel on GPUs for
each vertex (vertex shader) or each fragment (fragment shader)

 VVertex shader (before rasterization)

 Modelview projection transform of vertex and normal
* If per-vertex lighting, compute lighting for each vertex

* Fragment shader (after rasterization)

* If per-vertex lighting, assign color to each fragment
* If per-fragment lighting, compute lighting for each fragment

Texture Mapping

* Map textures (2D images) to 3D models

Without texture
* Need to specify vertex colors

With texture
e Vertex colors from texture

Texture Mapping

e UV coordinates (normalized)

Texture Mapping

e Same texture, different UV coordinates for mapping

Texture Coordinates Rendered Triangle Texture Coordinates Rendered Triangle

Texture Mapping

» Texture filtering: the resolution of the texture image is different from
the displayed fragment

* Magnification
* Minification

© 00 00 © QP 00 0 O texel
@ @0 Q\Q Q Q@ 00 @@ © ©) fragment
D--@ >——?ro D--@) -©
cod Yo Q@ ><Q o
O O g9 O 0 O ONS_©
0 0T 0O © 'O 09 0@ @
Q@ 00 @9 @ ! ' 00 09 @
-l Vo) @ b--D - oD ¢
Magnification — Nearest Point Sampling Magnification — Bilinear Interpolation

Texture Mapping

» Texture filtering: the resolution of the texture image is different from
the displayed fragment

 Minification

- w
-7
-
- 7/
’

. . . RN
e minification PN
— = - L >, Level 2
‘ ! ‘| 7’ *\
% : ! ;:,\ Level 1
, ' 1 y
I) f’f
' \
/ ’ \/
‘ ! K
" gon . I
‘ magnification ; .
. \
\"\,.\ .

e.g. 8 % 8 \) Level O (Original)
e.g. 300 x 300

-

Minmaping

Texture Mapping

Review of the Graphics Pipeline

Transformed
Raw Vertices Vertices & Processed

& Primitives Primitives Fragments Fragments

Pixels Display

Vertex Fragment o
o /‘ Processor L_ / Rasterizer p Processor e/ Merging 1 /
(Programmable) (Programmable)
A 3D ,/:g\‘?»D A ",:é\c\)?D 2D array of
/00000'. /00000, golor-values
""" LAY TR,
Vertex shader Fragment shader Combine the fragments
* Vertex transforms * Texturing of all primitives into 2D
e Per-vertex lighting * Per-fragment lighting color-pixel for display

Further Reading

e Section 7.2, 7.1, Virtual Reality, Steven LaValle

* 3D graphics with OpenGL, Basic Theory
https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG B
asicsTheory.html

e Stanford EE267, Virtual Reality, Lecture 3
https://stanford.edu/class/ee267/syllabus.html

https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html
https://stanford.edu/class/ee267/syllabus.html

