

Geometric Primitives and Transformations

CS 4391 Computer Vision Professor Yapeng Tian Department of Computer Science

Slides borrowed from Professor Yu Xiang

How are Images Generated?

3D World

Geometry in Image Generation

3D World

2D Points and 3D Points

A 2D point is usually used to indicate pixel coordinates of a pixel

$$\mathbf{x} = (x, y) \in \mathcal{R}^2 \qquad \mathbf{x} =$$

A 3D point in the real world

$$\mathbf{x} = (x, y, z) \in \mathcal{R}^3$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

 ${\mathcal X}$

 \mathcal{Y}

Χ

Homogeneous Coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = w \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
homogeneous image
coordinates coordinates Up to scale
$$Up \text{ to scale}$$

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Vector Inner Product

https://en.wikipedia.org/wiki/Dot_product

Vector Cross Product

https://en.wikipedia.org/wiki/Cross_product

2D Lines

A line in a 2D plane
$$ax + by + c = 0$$
 $\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$
It is parameterized by $\mathbf{l} = (a, b, c)^T$ Homogeneous
 $k(a, b, c)^T$ represents the same line for nonzero k
Line equation
 $\mathbf{x}^T \mathbf{l} = 0$ $\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ $\mathbf{l} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

2D Lines

polar coordinates (θ, d)

Intersection of 2D Lines

$$\mathbf{l}=(a,b,c)^T$$
 $\mathbf{l}'=(a',b',c')^T$
The intersection is $\mathbf{x}=\mathbf{l} imes\mathbf{l}'$

 $\mathbf{l} \cdot (\mathbf{l} \times \mathbf{l}') = \mathbf{l}' \cdot (\mathbf{l} \times \mathbf{l}') = 0$

 $\mathbf{l}^T \mathbf{x} = \mathbf{l}^T \mathbf{x} = 0$

Vector cross product

$$a \times b$$

 $b \theta |a \times b|$
 a

 $\mathbf{a} \times \mathbf{b} = \|\mathbf{a}\| \, \|\mathbf{b}\| \sin(\theta) \, \mathbf{n}$

 $\mathbf{a} imes \mathbf{b} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{bmatrix}$

Vector dot product

A scalar $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$

3D Plane

A 3D plane equation ax + by + cz + d = 0

It is parameterized by (a,b,c,d)

Normal vector and distance

$$\mathbf{m} = (\hat{n}_x, \hat{n}_y, \hat{n}_z, d) = (\mathbf{\hat{n}}, d)$$

$$\mathbf{\hat{n}} = (\cos\theta\cos\phi, \sin\theta\cos\phi, \sin\phi)$$

3D Lines

Any point on the line is a linear combination of two points

$$\mathbf{r} = (1 - \lambda)\mathbf{p} + \lambda\mathbf{q}$$

Using a line direction

$$\mathbf{r} = \mathbf{p} + \lambda \hat{\mathbf{d}}$$

2D Transformations

2D Translation

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} t_x\\t_y \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$

Homogeneous coordinate $\mathbf{\bar{x}}' = \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \mathbf{\bar{x}}$ 3×3

2D Euclidean Transformation

2D Rotation + 2D translation $\mathbf{x'} = \mathbf{R}\mathbf{x} + \mathbf{t}$ $\mathbf{R} = \begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix}$ $egin{bmatrix} x' \ y' \end{bmatrix} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix}$ (x,y) $\sin \theta$ $x' = x \cos heta - y \sin heta$ $\cos \theta$ $y' = x \sin \theta + y \cos \theta$

orthonormal rotation matrix

 $\mathbf{R}\mathbf{R}^T = \mathbf{I} \text{ and } |\mathbf{R}| = 1$

2D Euclidean Transformation

2D Rotation + 2D translation

$$\mathbf{x'} = \mathbf{R}\mathbf{x} + \mathbf{t}$$
 $\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

$$\mathbf{x}' = \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{\bar{x}}$$
$$2 \times 3$$

$$\bar{\mathbf{x}} = (x, y, 1)$$

- Degree of freedom (DOF)
 - The maximum number of logically independent values
 - 2D Rotation?
 - 2D Euclidean transformation?

2D Similarity Transformation

Scaled 2D rotation + 2D translation

$$\mathbf{x}' = s\mathbf{R}\mathbf{x} + \mathbf{t} \qquad \mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
$$\mathbf{x}' = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{\bar{x}} = \begin{bmatrix} a & -b & t_x \\ b & a & t_y \end{bmatrix} \mathbf{\bar{x}} \qquad \mathbf{\bar{x}} = (x, y, 1)$$

The similarity transform preserves angles between lines.

2D Affine Transformation

Arbitrary 2x3 matrix

$$\mathbf{x'} = \mathbf{A}\mathbf{\bar{x}}$$
 $\mathbf{\bar{x}} = (x, y, 1)$

Parallel lines remain parallel under affine transformations.

2D Affine Transformation Examples

https://www.algorithm-archive.org/contents/affine_transformations/affine_transformations.html

2D Projective Transformation

Also called perspective transform or homography

$$\begin{aligned} \mathbf{\tilde{x}}' &= \mathbf{\tilde{H}}\mathbf{\tilde{x}} & \text{homogeneous coordinates} \\ 3 \times 3 & \mathbf{\tilde{H}} & \text{is only defined up to a scale} \\ x' &= \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}} & \text{and} & y' &= \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}} \end{aligned}$$

Perspective transformations preserve straight lines

Hierarchy of 2D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	3	lengths	\bigcirc
similarity	$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	4	angles	\bigcirc
affine	$\begin{bmatrix} \mathbf{A} \end{bmatrix}_{2 imes 3}$	6	parallelism	
projective	$\left[{{{{f{f{H}}}}}} ight]_{3 imes 3}$	8	straight lines	

3D Translation

3D Euclidean Transformation SE(3)

3D Rotation + 3D translation

$$\mathbf{x}' = \mathbf{R}\mathbf{x} + \mathbf{t}$$
$$\mathbf{x}' = \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{\bar{x}}$$
$$3 \times 4$$
$$\bar{\mathbf{x}} = (x, y, z, 1)$$

orthonormal rotation matrix

$$\mathbf{R}\mathbf{R}^T = \mathbf{I} \text{ and } |\mathbf{R}| = 1$$

$$3 \times 3$$

3D Similarity Transformation

Scaled 3D rotation + 3D translation

$$\mathbf{x}' = s\mathbf{R}\mathbf{x} + \mathbf{t}$$

$$\mathbf{x}' = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix} \bar{\mathbf{x}} \qquad \bar{\mathbf{x}} = (x, y, z, 1)$$
$$3 \times 4$$

This transformation preserves angles between lines and planes.

3D Affine Transformation

$$\mathbf{x'} = \mathbf{A}\mathbf{\bar{x}}$$
 $\bar{\mathbf{x}} = (x, y, z, 1)$

$$\mathbf{x}' = \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \end{bmatrix} \bar{\mathbf{x}}$$
$$\frac{3 \times 4}{2}$$

Parallel lines and planes remain parallel under affine transformations.

3D Projective Transformation

Also called 3D perspective transform or homography

$${f ilde x}'={f ilde H}{f ilde x}$$
 homogeneous coordinates $4 imes 4 imes {f ilde H}$ is only defined up to a scale

Perspective transformations preserve straight lines

3D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	3	orientation	
rigid (Euclidean)	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	6	lengths	\bigcirc
similarity	$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	7	angles	\bigcirc
affine	$\begin{bmatrix} \mathbf{A} \end{bmatrix}_{3 imes 4}$	12	parallelism	
projective	$\left[\mathbf{ ilde{H}} ight]_{4 imes 4}$	15	straight lines	

Further Reading

Section 2.1, Computer Vision, Richard Szeliski

Chapter 2 and 3, Multiple View Geometry in Computer Vision, Richard Hartley and Andrew Zisserman