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Auditory Rendering

* Producing sounds for the virtual world

e Aural displays: speakers

* The generated sounds should be consistent with visual cues and with
past auditory experiences in the real world




Spectral Decomposition
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Frequency of Sinusoidal Functions

* Period: length of a complete cycle
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* Frequency: number of cycles in 1 unit
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Sampling Rate

* Continuous-time signal x(t)
 Discrete-time signal, how computers process signals

e Sampling interval /\¢

* Sampling rate (sampling frequency) Hz 1/At
* 1000Hz sampling rate, /\{ is 1ms
* How many samples per second




Nyquist—=Shannon Sampling Theorem

* The sampling rate should be at least two times the highest frequency
component in the signal

* The highest frequency for audio is 20,000 Hz, sampling rate at least
40,000 Hz

e Sampling rate of CDs and DVDs: 44,100 Hz and 48,000 Hz
* kth sample il’,'[k] S— CB(kAt)




Nyquist=Shannon Sampling Theorem
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https://www.allaboutcircuits.com/technical-articles/nyquist-shan understanding-sampled-systems/




Linear Filters

 Afilter is a transformation that maps one signal to another

r(t) — | Fiter |— F(x(t))

e Linear filters
* Additivity F(z+2') = F(x)+ F(2')

* Homogeneity ¢['(z) = F(cx)
* A general form

ylk| = cox|k] + crzlk — 1] 4+ cox|k — 2] + c3zlk — 3] + - - - + c,x |k — n)




Examples of Linear Filters

* Moving average

ylk] = %x[/{] + %Cl?[k — 1] + %x[/{ — 2]

* Exponential Smoothing (exponentially weighted moving average)

olk] = alk] + galk— 1]+ %az[k 94 1—16:6[/@ g




Nonlinear Filters

* Any filter that does not follow the following form

ylk| = coxlk] + crxlk — 1] 4+ cox|k — 2] + cgxlk — 3] + - - - + ¢, x|k — n]

* Human auditory system is almost a linear filter, but contains nonlinear
behaviors




Fourier Analysis

* Fourier transform for discrete-time systems
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* Applying a transfer function
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ter can be designed to modify the spectral distribution
* Amplify some frequencies, while suppressing others

* Transforming the original signal using the Fourier transform
* Multiplying the transfer function
* Applying the inverse Fourier transform




Transfer Function
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Acoustic Modeling

* The same geometry model can be used for both visual modeling and
auditory modeling

* E.g., walls can reflect lights and sound waves

The acoustic model
needs to have a spatial
resolution of only 0.5m

Figure 11.13: An audio model is much simpler. (From Pelzer, Aspock, Schroder,

and Vorlander, 2014, [253])




Acoustic Modeling

e Sound source in the virtual environment
* White noise, equal weight of all frequencies in the audible spectrum
* Interesting sounds, high concentration among specific frequencies

* Sound reflection (depends on wavelength)
e Specular reflection for a large, smooth, flat surface

 Diffuse reflection for smaller objects, surface with repeated structures
(difficult to characterize for sounds)




Propagation of Sounds

* Method 1: simulating the physics as accurately as possible
* When waves are large relative to objects in the environment
* Low frequency, detailed environment

* Method 2: Shooting visibility rays and characterize the dominant
interactions between sound sources, surfaces, and ears

* Higher frequency, simpler model




Numerical Wave Propagation

* Helmholtz wave equation

 Constraints at every point in R3 in terms of partial derivatives of the pressure
function
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Visibility-based Wave Propagation

* Paths of sound rays that emanate from the source and bounce
between obstacles
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Figure 11.15: Reverberations. (From Pelzer, Aspock, Schroder, and Vorlander,

2014, [253])




Sound Simulation Results

GWA: A Large High-Quality Acoustic
Dataset for Audio Processing
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https://www.youtube.com/watch?v=aJOCcaEeLUA




Entering the Ear

* A virtual microphone positioned in the virtual world captures the
simulated sound waves

e Convert into audio output through a speaker in front of the ear

* ILD and ITD can be simulated by accounting for both ears
* Interaural Level Difference (ILD), Interaural Time Difference (ITD)
* Need to model the physical head in the virtual world
* Head related transfer function (HRTF)




Tracking the Ears

* If the user turns her head, the sound should be adjusted accordingly

* Perception of stationary for sounds
* Fixed sound source should be perceived as fixed

* Tracking the ear poses to determine the “viewpoint” for sounds




Further Reading

e Section 11.4, Virtual Reality, Steven LaValle




