

Introduction to Computer Vision

CS 4391 Computer Vision Professor Yapeng Tian Department of Computer Science

Instructor

Dr. Yapeng Tian Assistant Professor in UTD@CS

Research area:

- Computer Vision
- Computer Audition
- Machine Learning

yapengtian.com

Today

- What is computer vision?
- Why study computer vision?
- Why is computer vision difficult?
- Course overview

Every Image Tells a Story

https://unwritten-record.blogs.archives.gov/2019/04/11/a-picture-is-worth-a-thousand-words/

- Primary goal of computer vision: perceive the "story" behind the picture by machines
- Compute properties of the world
 - 3D shape
 - Names of people or objects
 - What happened?

Slide Credit: Noah Snavely

A gray image is represented by a 2D matrix in computer, and each pixel value is in [0, 255].

• Compute the 3D shape of the world

https://zubair-irshad.github.io/projects/ShAPO.html

• Recognize persons and objects

• Describe visual content

https://huggingface.co/spaces/SRDdev/Image-Caption

• Enhance photo quality

Image super-resolution

Image denoising

Low-light image enhancement

Image deblurring

Image deraining

• Manipulate photos

Image inpainting [theinpaint.com]

Style transfer [Gatys et al. 2016]

Which image was produced by humans?

• Generate visual content by Al

DALL-E 2@OpenAl

• Generate visual content by AI

DALLE History Collections Edit the detailed description Two dogs are flying on the sky		Berpeherma Uuptaad →1 Generate

Why study computer vision?

• Billions of images/videos captured per day

• Huge number of potential applications

Slide Credit: Noah Snavely

UD THE UNIVERSITY OF TEXAS AT DALLAS

Optical Character Recognition (OCR)

• recognize text from scanned images and documents

Digit recognition, Yann LeCun. (1990's)

Check Entry			
Fort Back			
DataTrade Demo Nei Negeritable 1883 Sono Aume Barbar Da Sano Part To The Others or Jarla Stade Margane NO 8880 HERO ::::::::::::::::::::::::::::::::::::	001 Collan 19/100- Voca 344999* 0300	100 Lib 18-2066	Rotate
Betch No: 1001 Sequence No: 2 Routing No: 111907445 MERCHANI	Oeck Account No: 72344999	Oreck.No: Orec 0 100	Amount 653.10

Automatic check processing

Plate recognition

Biometric

Biometric techniques are methods used to identify individuals based on their physical or behavioral characteristics.

https://modelcards.withgoogle.com/face-detection

FaceID

A facial recognition system for law enforcement [Credit: Saul Loeb]

Access control

Face Detection and Recognition

Autonomous Driving

• Detect persons, cars, and lanes on roads and streets

Source: https://medium.com/@safk8899/computer-vision-in-autonomous-vehicles-21dffa873b23

Tesla Self-Driving Car

https://vimeo.com/192179726?embedded=true&source=vimeo_logo&owner=128712855

Robotics

Automotive Manufacturing

Delivery Robots

Agriculture

THE UNIVERSITY OF TEXAS AT DALLAS

Healthcare

https://www.youtube.com/watch?v=nezqrfAP-g8

Virtual/Augmented Reality

https://www.youtube.com/watch?feature=oembed&v=w52CziLgnAc

The Origin of Computer Vision

Marvin Minsky in a lab at M.I.T. in 1968.

- 1970s: Viewed as the visual perception component of an ambitious agenda to mimic human intelligence and to endow robots with intelligent behavior.
- At the time, it was believed by some of the early pioneers of Al and robotics that solving the "visual input" problem would be an *easy step* along the path.
- An undergraduate project assigned by Marvin Minsky in 1966: "spend the summer linking a camera to a computer and getting the computer to describe what it saw."

Computer vision is far more complex than they thought!

Timeline of Active Topics in Computer Vision

1970	1980	1990	2000	2010	2020
Digital image processing Blocks world, line labeling Generalized cylinders Pattern recognition Stereo correspondence Intrinsic images	Optical flow Structure from motion Image pyramids Shape from shading, texture, and focus Physically-based modeling Regularization	Markov random fields Kalman filters 3D range data processing Projective invariants Factorization Physics-based vision	Graph cuts Particle filtering Energy-based segmentation Face recognition and detection Image-based modeling and rendering Taxture contraction and invaluting	Computational photography Feature-based recognition Category recognition Machine learning Modeling and tracking humans	Semantic segmentation SLAM and VIO Deep learning Vision and language

Why is computer vision difficult?

Scale

Slide Credit: Noah Snavely

Why is computer vision difficult?

Intra-class variation

Slide Credit: Noah Snavely

Motion (Source: S. Lazebnik)

Occlusion

D THE UNIVERSITY OF TEXAS AT DALLAS

Challenges: local ambiguity

Slide Credit: Fei-Fei, Fergus & Torralba

What will you learn?

Image Formulation and Processing

Feature Detection and Matching

Deep Learning in Computer Vision

Visual Recognition

Visual Motion

3D Vision

Advanced Topics in Computer Vision

• e.g., NeRF, visual representation learning, vision and language, vision and audio

Course Details

Richard Szeliski. Computer Vision: Algorithms and Applications. Second Edition, 2022. Available online: <u>https://szeliski.org/Book/</u>

My office hour: Monday 2pm - 3pm, ECSS 4.211 or By Appointment

TA office hour: TBD

Course website: <u>www.yapengtian.com/t/4391F23</u>

Course access and navigation: <u>eLearning</u>

Course Pre-requisites: Linear Algebra and Python Programming

Computer Vision Algorithms and Applications Second Edition **Richard Szeliski**

TEXTS IN COMPUTER SCIENCE

🖄 Springer

Grading Policy

Homework (30%)

- 5 homework in total
- Submit all homework assignments on time. Collaboration is allowed but final work is done independently, and all collaborators should be acknowledged.
- Individual submission

Midterm (30%)

Team Project (30%):

- Develop and implement a method to solve a vision-related problem
- Maximum 4 students for a project
- Project proposal (5%)
- Project presentation (10%)
- Project final report (15%)

In-class Activity (10%)

• 10 quizzes

Late Submission

- For the assignments (not including your final project report), students will be allowed a total of **five** late days per semester
 - No additional late days will be given
- After you use up the free late days, your late submissions will be penalized as follows:
 - Assignments turned in within 24 hours of the due date will receive 90% of its score.
 - Assignments turned in within 48 hours of the due date will receive 70% of its score.
 - Assignments more than 48 hours late will not be accepted.

Questions?

THE UNIVERSITY OF TEXAS AT DALLAS